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Abstract

Computer-assisted theorem proving is a valuable tool for the development of
formal proofs in computer science and mathematics. Although proof assistants
such as Abella [Gacek, 2008], Coq [The Coq development team, 2004], and A. Gacek. The Abella interactive theorem

prover (system description). In A. Armando,
P. Baumgartner, and G. Dowek, editors,
Proceedings of ĲCAR 2008, volume 5195 of
Lecture Notes in Artificial Intelligence, pages
154–161. Springer, August 2008
The Coq development team. The Coq proof
assistant reference manual. LogiCal Project,
2004. URL http://coq.inria.fr. Version
8.0

Twelf [Pfenning and Schürmann, 1999] are widely used in the research and

F. Pfenning and C. Schürmann. System
description: Twelf—a meta-logical frame-
work for deductive systems. In Automated
Deduction—CADE-16, pages 202–206.
Springer, 1999

professional domains, their use in computer science education remains relatively
unexplored. In particular, undergraduate computer science education, where
students are first exposed to the concept and elements of a formal proof, has largely
ignored the possibility of computer-assistance in this area. We present Arend, a
proof assistant specifically intended for use as a teaching tool in the undergraduate
computer science curriculum.

Arend differs from existing systems in three main areas:
• While traditional proof assistants place equal emphasis on the develop-

ment of specifications and the reasoning about them, Arend places the task of
specification-development squarely in the hands of the instructor. The speci-
fication language is not intended for student consumption, and its use during
the proof process is limited to being the source of the rules and data types
being considered.

• While research-level proof assistants often have complex higher-order fea-
tures, we restrict ourselves to a purely first-order logic. This limits the types
of systems which can be specified — although common mathematical and
computational structures such as N, sets, lists, trees, and graphs are still
readily representable — but also limits the complexity of the proofs that can
be required. We feel it is important to avoid requiring proofs that do not
obviously correspond to the analogous paper proofs.

• Arend’s user interface is highly interactive and non-linear, allowing students to
move freely between different cases in a proof, different proofs, new lemmas,
etc. The underlying specification is presented visually, as a collection of
inference rules, while proofs themselves are constructed and presented visually
as derivation trees, rather than in the traditional written format (e.g., “by
induction on … by inversion…” etc.).
We hope that Arend will offer undergraduate students an early, and not

unpleasant, exposure to the important realm of computer-assisted theorem
proving, as well as offering instructors a useful new tool in the presentation and
use of formal proofs.
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Preface

Formal proofs are an integral part of the undergraduate computer
science curriculum. The techniques of proofs are introduced early, often within
the first semester, and are used in both theoretic (e.g., language and automata
theory) and practical (e.g., analysis of algorithms) coursework. Despite this,
the use of computerized proof assistants at the undergraduate level is surprisingly
rare. We believe that an early introduction to computer-assisted proofs can
be a valuable and useful component of the undergraduate curriculum. With
appropriate software tooling, the process of developing a formal proof can
become an exercise in the same kind of algorithm reasoning used in other forms
of programming.1 1 Indeed, in the logic which undergirds our

system, proofs are a limited kind of program.Arend is a proof assistant designed specifically for use in the undergraduate
sphere. This narrow focus allows it to deviate significantly from the designs
of other proof assistants. In particular, while commercial and research proof
assistants often aim for more powerful logics, so as to facilitate more powerful
proof techniques, Arend’s logic is intentionally simple, with just enough power
to formalize the systems commonly introduced at the undergraduate level
(set theory, number theory and induction over N, finite automata, regular
expressions, and formal languages). This allows Arend’s proofs to proceed in an
uncomplicated (though sometimes verbose) fashion.

In a further deviation from existing applications, Arend presents its proofs
graphically, rather than textually. Proofs are constructed by interacting with
a visual representation of the proof tree. The user selects the element of the
proof on which they wish to act and the system presents the results of their
action by updating the tree.

Arend’s underlying logic is constructive, the intuitionistic logic of Brouwer
[Brouwer, 1907], Heyting [Heyting, 1966], and Gentzen [Gentzen, 1935]. L. E. J. Brouwer. On the foundations of

mathematics. 1975) LEJ Brouwer: Collected
Works, 1:11–101, 1907
A. Heyting. Intuitionism, volume 41. Elsevier,
1966
G. Gentzen. Untersuchungen über das
logische schließen. i. Mathematische zeitschrift,
39(1):176–210, 1935

(Arend is named for Arend Heyting, one of the fathers of intuitionism.) A
logic based on intuitionism has several advantages over one based on classical
logic:

• Intuitionism emphasizes evidence: to prove a proposition P true is to give
evidence for its truth. To prove a proposition false is to prove that it implies
a contradiction. In particular, proving ∀x, P (x) implies that we have a
method, an algorithm, for producing a proof of P , given any x. Similarly,
∃x, P (x) implies that we have a method for finding at least one x such that
P (x). This grounding in the concrete, in forcing every proof to answer the
question of how it is true, we hope will remove some of the abstractness of
formal proofs that is often problematic for beginning students. Many a student has stared at the Law of

Noncontradiction, P ∨ ¬P and wondered,
“Which one is it?” In intuitionistic logic,
P ∨ ¬P is not axiomatic, but rather a
statement about the proposition P : the
problem P is solved, it is either true or false,
and we know which one.

• An intuitionistic proof is inherently hierarchical. A proof is a tree of sub-
proofs. This presentation of proofs, as instances of a familiar data structure,
is emphasized by Arend’s visual presentation of proof-trees, as the traditional
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paragraph-proof notation tends to obscure the fact that a proof is composed
of subproofs.

• Because proofs are hierarchical, their construction is very similar to that of
other kinds of programming. A proof is iteratively broken down into smaller
parts, lemmas can be used, like functions, to abstract out commonly-used
subproofs, or to break down proofs that would otherwise be too large and
unwieldy to understand.

• The lack of traditional negation eliminates some of the more-confusing
elements of traditional logic programming. In particular, Arend has nothing
corresponding to “negation as failure”; it is not possible in Arend to know,
in a computational sense, when a proposition P fails. Thus, reasoning in
Arend is entirely about things that are known to be true, never about things
that are assumed to be false.

Visually, Arend presents proofs as trees of subproofs. A proof in this presen-
tation has the form

P1 P2 . . . Pn

A1, A2, . . . , Am ⊢ G

where the Pi are (possibly trivial) subproofs. The user navigates the proof
process by elaboration. An incomplete proof is presented as

?
A1, A2, . . . , Am ⊢ G

Selecting one of the Ai or the goal G is generally sufficient to identify the
action to be performed.2 The action specifies what subproofs will be replace 2 The exception is when G has the form

G1 ∨ G2; in this case, a particular branch of
the disjunction must be specified.

the ?, and how their A′
i and G′ will differ from those of the root of the proof.

Thus, each user action “grows” the proof upward and outward, until the ax-
iomatic leaves are reached. Note that it is not possible in Arend to construct an
invalid proof; the only actions which can be taken are those which make sense
in a given proof state, and the resulting proof state is always consistent.3 3 It is not hard to imagine an alternate mode

of interaction, in which the user constructs
the subproofs, rather than having them
presented by the system. In such a mode
the system would function as a pure proof
checker, validating proofs only when marked
as complete.

We believe that this emphasis on concrete proofs, proofs which present evi-
dence, and on direct interaction will bring formal proofs out of the unfortunate
corner to which they are often relegated, and enable students to see that formal
methods can be both useful and eǌoyable.

Background

Related work

Arend is a proof assistant, a software tool to aid in the application of
formal methods. We can partition this range of software tools into three not-
necessarily disjoint sets:

• Automated theorem provers aim to automate as much of the work of proving
a given theorem statement as possible. The hope is that the system will,
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if sufficiently “smart”, be able to prove any theorem which a human with
near-infinite patience could prove. Proofs produced by automated theorem
provers are often quite lengthy, some stretching into the thousands-of-pages.
Automated theorem provers must often employ sophisticated heuristics in
their proof search algorithms, to avoid the exponential run times that would
otherwise be required.

• Model checkers are concerned the automatic checking of a given model
against a formal specification. For example, given a state machine as a
model of a computational system, we may wish to verify that the system
never enters some particular set of error states. Since model checking is only
tangentially related to our subject, we will not discuss it further.

• Proof assistants aim to aid in the development and checking of formal proofs.
While some systems only check proofs for completeness, more modern sys-
tems will typically also aid the user in the development of a proof. Recent
examples include Coq [The Coq development team, 2004], Twelf [Pfen- The Coq development team. The Coq proof

assistant reference manual. LogiCal Project,
2004. URL http://coq.inria.fr. Version
8.0

ning and Schürmann, 1999], and Abella [Gacek, 2008]. Several element of

F. Pfenning and C. Schürmann. System
description: Twelf—a meta-logical frame-
work for deductive systems. In Automated
Deduction—CADE-16, pages 202–206.
Springer, 1999
A. Gacek. The Abella interactive theorem
prover (system description). In A. Armando,
P. Baumgartner, and G. Dowek, editors,
Proceedings of ĲCAR 2008, volume 5195 of
Lecture Notes in Artificial Intelligence, pages
154–161. Springer, August 2008

Arend’s design were influenced by Abella, most notably the use of a con-
structive two-level logic for describing and reasoning about systems. For
a full history of the development of computer-assisted proof systems, see
Geuvers [2009].

H. Geuvers. Proof assistants: History, ideas
and future. Sadhana, 34(1):3–25, 2009

• More recently, several systems have emerged which try to bridge the gap
between traditional functional programming and theorem proving. Systems
such as Agda [Norell, 2007], Idris [Brady, 2011], and Beluga [Pientka and

U. Norell. Towards a practical programming
language based on dependent type theory. PhD
thesis, Department of Computer Science
and Engineering, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden,
September 2007
E. C. Brady. Idris—: systems programming
meets full dependent types. In Proceedings
of the 5th ACM workshop on Programming
languages meets program verification, pages
43–54. ACM, 2011

Dunfield, 2010] are based on the Curry-Howard isomorphism (see below)

B. Pientka and J. Dunfield. Beluga: A frame-
work for programming and reasoning with
deductive systems (system description). In
Automated Reasoning, pages 15–21. Springer,
2010

and thus represent propositions as types, and proofs as functional programs.
These systems offer varying degrees of support for “real-world” usage: in-
terfaces to system libraries, optional non-termination (logical soundness
traditionally requires that all programs terminate), and friendly syntax. At
the same time, their type systems (typically dependently-typed) are suf-
ficiently powerful to represent interesting propositions about the systems
being implemented.

Many proof assistants are based on the Curry-Howard isomorphism which
roughly states that types are propositions and programs are proofs of their types.
That is, saying that a term t has type P is the same as saying that t is a proof
of P . Under this view, proof checking is the same as type checking. Arend
is not directly based on the Curry-Howard isomorphism; although its proofs
are terms, it does not check them by computing their types, since terms in
Arend are untyped. Nonetheless, we believe that it should be possible to derive
a consistent type system from Arend’s reasoning logic, which would support
this interpretation.

Proof assistants that present a graphical interface are rare. While graphical
“wrappers” exist for some systems (for example, ProofWeb4 for Coq), these 4 http://prover.cs.ru.nl/login.php

http://prover.cs.ru.nl/login.php
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were not a part of the design of their underlying systems. The only proof
assistant of which we are aware which makes graphical interaction as much
an integral feature as Arend is HLM [Reichelt, 2010]. Like Arend, HLM S. Reichelt. Treating sets as types in a

proof assistant for ordinary mathematics.
Institute of Informatics, University of
Warsaw, Warszawa, Poland, 2010. URL
http://hlm.sourceforge.net/types.pdf

encourages direct manipulation of in-progress proofs and is explicitly designed
with that hope that it will make building proofs “fun”, but unlike Arend, it is
based on classical, rather than constructive logic, and has a more mathematical,
and less pedagogical, aim.

Use of proof assistants within education has been largely limited to the
graduate sphere. Nonetheless, some pertinent work on their use at the under-
graduate level does exist:

• Kadoda et al. [1999] present the results of a survey on the desirable user- G. Kadoda, R. Stone, and D. Diaper. De-
sirable features of educational theorem
provers–a cognitive dimensions viewpoint. In
Collected Papers of the 11th Annual Workshop of
the Psychology of Programming Interest Group
(PPIG-11), pages 18–23, 1999

interface features in an educational proof assistant. One surprising result
they describe is a positive correlation between both the interactivity of a
system, and its ability to work with explicit proof trees, and the “error-
proneness” of a system. This strikes us as surprising, as Arend is both in-
teractive and works with explicit proof trees, and yet has virtually no error-
proneness during the proof construction process, as users are limited strictly
to those actions which will progress the proof in a valid way. However, sev- It should be noted this author did not

discover Kadoda’s work until after Arend’s
design, with its emphasis on these features,
was largely finalized.

eral features which Kadoda describes as being “highly” desirable are present
in Arend: its support for visualizing proof structure, its consistency, and in
the degree of “assistance” it gives to the user.

• Suppes [1981] offers an interesting perspective, that of an instructor of math- P. Suppes. Future educational uses of inter-
active theorem proving. In University-level
Computer-assisted Instruction at Stanford:
1968-1980, pages 399–430. Stanford Univer-
sity, Instute for Mathematical Studies in the
Social Sciences; Stanford, CA, 1981

ematics, not computer science, at Stanford University, and furthermore, one
who had, at the time of this publication, been using interactive theorem
proving in undergraduate coursework for almost twenty years. Suppes raises
several points of concern which are still relevant, most notably the conflict
between providing a system which is “intelligent” and, hence, easy to use,
and one which meets the pedagogical goals of teaching introductory material
(the sort of material which a more intelligent proof assistant would tend to
elide). Thus, although Arend is actually capable of automatically proving
a reasonable large set of propositions, during proof construction it inten-
tionally refrains from doing so, thus forcing the user to carry out — and,
hopefully, to learn — the elementary steps of proof construction.

Inference rules and natural deduction

Arend presents its specifications and proofs as inference rules and derivations,
respectively. Since this presentation is central to the system, we review its basic
elements here, by incrementally developing a simple zeroth-order intuitionistic
logic with syntax-directed rules.5 5 Syntax-directed implies that in each rule,

everything above the line is a subterm of
something below the line. This implies that
new terms are not magically created out of
nothing, so that proof search may proceed in
a straightforward bottom-up order.

An inference rule is written

Rule-Name
P1 P1 . . . Pn

Q
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and should be read as “Q is true when P1, P2, etc. are.” We call Q the conclu-
sion of the rule and the Pi its premises. For logical coǌunction and disjunction,
we have the rules

True ⊤

And
P1 P2

P1 ∧ P2
Or-1

P1

P1 ∨ P2
Or-2

P2

P1 ∨ P2
Note: the “elimination rules” for ∧,

P ∧Q

P

P ∧Q

Q

are not syntax directed but appear in an
alternate form below.

Already from these we can construct some simple proofs-as-derivations:

And
True ⊤

Or-R
True ⊤
(⊥ ∨⊤)

⊤ ∧ (⊥ ∨⊤)

If we wish to add implication to our system we run into a complication: we
want A → B to express “B is true given A, or assuming A.” That is, a valid
derivation for B is now allowed to terminate, not just with the axiomatic rules
of the system, but also with

Assume-A
A

However, this assumption only applies within the “scope” of the subproof of
A→ B.

In order to express this, we introduce the hypothetical judgments using the
symbol ⊢. A1, A2, . . . An ⊢ C should be read “C is true assuming A1, etc.”
We call the Ai the antecedents of the judgment, and C the consequent. (Al-
though not strictly correct, we will sometimes refer to the antecedents and
consequent of a rule, since a rule can have at most one hypothetical judgment as
its conclusion.) 6 We use Γ to signify any collection of Pi. To enable the use of 6 Note that ⊢ is not a logical connective;

in particular, it is not valid to say, e.g.,
A ∧ (B ⊢ C).

⊢ in our derivations we add the following axiom, known as the assumption rule:

Assume
A1, A2, . . . , An ⊢ Ai,1≤i≤n

That is, “Ai is true assuming Ai”.
Using ⊢ we can now formulate the rule for→:

→
Γ, P ⊢ Q

Γ ⊢ P → Q

This states that P → Q is true if assuming P allows us to prove Q.
We also have to reformulate the existing rules to specify how Γ is carried

during a derivation:

Assume
A1, A2, . . . , An ⊢ Ai,1≤i≤n

True
Γ ⊢ ⊤

And
Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ P1 ∧ P2

Or-1
Γ ⊢ P1

Γ ⊢ P1 ∨ P2
Or-2

Γ ⊢ P1

Γ ⊢ P1 ∨ P2
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→
Γ, P ⊢ Q

Γ ⊢ P → Q

However, the introduction of ⊢ and Γ, while solving the problem of impli-
cation, introduces another difficulty. Consider the proof of (P ∧ Q) → P ,
which we would expect to be true.

→
P ∧Q ⊢ P

(P ∧Q)→ P

We cannot complete the proof, because the assumption rule only allows us to
conclude P ∧ Q. Despite the fact that we are assuming “P and Q” to be true,
and, according to the rules of our system, this can only be the case if P is true,
and Q is true, independently, we have no way of “extracting” the truth of P
from the known truth of the coǌunction.

In fact, we now need another set of rules telling us what operations are
permitted on logical connectives on the Left side of the ⊢. All the rules we
have presented so far have been Right rules, in that they described the valid
operations on the conclusion of the ⊢. Furthermore, we require that the Left It is perfectly acceptable to prove, given P , less

than P . For example, in our system we have
P ⊢ ⊤. ⊤ carries less information than any
particular P , precisely because it is provable
in any context.

and Right rules of our system (indeed, any reasonable system) be consistent;
it should always be the case that P ⊢ P , given P (for any valid proposition P ),
we can prove exactly P .

There is no True-L rule. False-L
Γ,⊥ ⊢ C

There is no False-R rule.

And-L
Γ, P,Q ⊢ C

Γ, P ∧Q ⊢ C
Or-L

Γ, P ⊢ C Γ, Q ⊢ C

Γ, P ∨Q ⊢ C

(We omit the→ Left rule as it is somewhat unintuitive and is not used in
our system.) The somewhat-surprising False-L rule corresponds to the
logical principle of ex falso quodlibet; i.e., if false is assumed to be true, then any
proposition can be proved. In comparison to ⊤ being the minimal

element in our system, the element which
conveys the least information, ⊥ is the
maximal element, because from it we can
prove anything. Thus it can be thought of as
“containing” all possible proofs, even those
that are contradictory!

With both Left and Right rules we can now present proofs of simple
logical tautologies, beginning with the formerly-unprovable (P ∧Q)→ P :

→ R
∧-L

P,Q ⊢ P

P ∧Q ⊢ P

(P ∧Q)→ P

(This exposition of natural deduction is by necessity quite simplified. For an
exposition of the modern form of natural deduction, see Gentzen [1964]. For a G. Gentzen. Investigations into logical

deduction. American philosophical quarterly,
pages 288–306, 1964

more rigorous presentation of the logical connectives in natural deduction, see
Martin-Löf [1996].) P. Martin-Löf. On the meanings of the

logical constants and the justifications of the
logical laws. Nordic journal of philosophical
logic, 1(1):11–60, 1996
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Arend System Description

Specifications

Arend presents the rules of the underlying system as a collection of inference
rules. For example, figure 1 presents the rules defining the set of natural num-
bers, together with natural number addition and the less-than relation.

Nat-z
nat(z)

Nat-Succ
nat(X)

nat(s(X))

Add-z
add(z,X,X)

Add-Succ
add(X,Y, Z)

add(s(X), Y, s(Z))

>-z
s(X) > z

>-Succ X > Y
s(X) > s(Y )

Figure 1: Inference rules defining natural
numbers, addition, and <

(This specification is a fragment of the N specification included with Arend,
described in appendix II.) Observant readers may note that this defini-

tion of the set N is missing the traditional
third clause required in inductive definitions:
the statement that “nothing else” is an ele-
ment of the set in question. This omission is
intentional, because the closure property of the
rules is implicit in the logic of our system.

In the syntax of the specification language, the above can be written as
”Nat-0”: nat(0).
”Nat-Succ”: nat(s(X)) :- nat(X).

”Add-0”: add(0,X,X).
”Add-Succ”: add(s(X),Y,s(Z)) :- add(X,Y,Z).

”<-0”: 0 < s(_).
”<-Succ”: s(X) < s(Y) :- X < Y.

Under this system, we can ask for a derivation (i.e., a proof ) that, for exam-
ple, add(s(z), s(z), s(s(z))):

Add-Succ
Add-z

add(z, s(z), s(z))

add(s(z), s(z), s(s(z)))

Proofs-as-derivations proceed upward, from the statement to the use of
axiomatic rules at the “leaves” of the proof tree.7 7 A rule is an axiom if it has no premises;

nothing above the line.The specification logic of Arend is based on a limited subset of an intuition-
istic first-order logic. The full syntax of specifications is given in Appendix I.
Note that while the syntax is superficially that of traditional Prolog, several
extensions and restrictions are applied:

• The body of any clause must consist of a coǌunction of atomic goals.
Nested disjunctions, the “cut” operator, etc. are all forbidden.

• Rules (definitions) may have names, which are displayed in the user interface.

• Render declarations describe how to convert goals into HTML for rendering
in the user interface. This is used to translate the internal representation
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of goals as terms into a more mathematically-familiar form. (Eventually,
one of the LATEX-to-HTML translators may be used to allow more succinct
mathematical renderings.)

• New user-defined infix operators may be created, simply by using a token
whose text consists entirely of symbolic characters. Infix operators that
would otherwise be parsed as ordinary atoms may be declared infix, via an
infix declaration.

The restriction that all clauses of a rule consist solely of a coǌunction is
present for two reasons: one, it allows the specification logic to have very sim-
ple execution semantics, and two, it allows the specification logic to be easily
embedded in the reasoning logic.

Specification execution

It is important that Arend specification language be not just logically con-
sistent, but also executable; users can enter queries against a specification and
receive answers, in the form of a unifier (as in traditional Prolog) coupled with
a derivation. The derivation illustrates the tree of rule-applications that must
be followed in order to produce the associated unifier. Note that derivations
produced by queries are a restricted form of the derivations constructed as
proofs. Thus, queries against the specification can serve as an introduction to
the creation of simple proofs.

Since Arend’s specification logic is a restricted form of the Horn-clause clas-
sical logic used in traditional Prolog, a resolution-style proof search procedure
is sufficient to execute queries against a specification. Note that in keeping with
its intuitionistic foundation, Arend has no negation operator. (Intuitionistically,
¬P can be defined as P → ⊥, but Arend’s specification logic lacks the right-
ward→ implication operator. This operator is present in the reasoning logic,
which thus requires a more sophisticated handling.)

Reasoning logic

Arend’s reasoning logic is closer to a full expression of first-order
intuitionistic logic, with extensions to support proofs by single-induction.
The inference rules defining the reasoning logic are presented in Figure 2. It
supports rightward implication (→), with the restriction that the left-hand side
cannot contain nested implications, only coǌunctions, disjunctions, and atomic
goals.8 This implies that antecedents cannot contain implications, since they 8 This restriction subsumes the stratification

restriction in Abella; stratification in some
form is required to ensure monotonicity of
the logic.

cannot be added by→R, and are not allowed in definitions in the specification
logic.
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Assume
P1, . . . , Pn ⊢ Pi

⊤R
Γ ⊢ ⊤ ⊥L

Γ,⊥ ⊢ P

∧R

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P ∧Q
∧L

Γ, P,Q ⊢ G

Γ, P ∧Q ⊢ G

∨R1

Γ ⊢ P
Γ ⊢ P ∨Q

∨R2

Γ ⊢ Q

Γ ⊢ P ∨Q

∨L

Γ, P ⊢ G Γ, Q ⊢ G

Γ, P ∨Q ⊢ G

→R

Γ, P ⊢ Q

Γ ⊢ P → Q
(There is no →L rule, because implica-
tions are not allowed in antecedents.)

∀R
Γ ⊢ P (y)

Γ ⊢ ∀x : P (x)
∀L

Γ, ∀x : P (x), P (t) ⊢ G

Γ,∀x : P (x) ⊢ G

∃R
Γ ⊢ P (t)

Γ ⊢ ∃x : P (x)
∃L

Γ, P (y) ⊢ G

Γ,∃x : P (x) ⊢ G

=R
Γ ⊢ t = t

=L
Γ[t1=t2] ⊢ G[t1=t2]

Γ, t1 = t2 ⊢ G

Atomic-Right

G ≡ C1 ∨ C2 ∨ . . . ∨ Cn

Γ ⊢ C1 ∨ C2 ∨ . . . ∨ Cn

Γ ⊢ G

Atomic-Left

A ≡ C1 ∨ C2 ∨ . . . ∨ Cn

Γ, C1 ∨ C2 ∨ . . . ∨ Cn ⊢ G

Γ, A ⊢ G

Notes:

• In ∀R and ∃L, the variable y must be “fresh” in Γ.

• In ∀L, =R, and ∃R, t is a term, which may use variables from Γ.

• In =L, the notation P[x=y] indicates that the unification x = y should be
performed and the resulting substitution applied to P . Similarly, Γ[x=y]
indicates that the substitution is to be applied to every goal in Γ.

• In Atomic-Left and -Right, each clause will contain the unification⒮ neces-
sary to unify its actual head with the atomic goal.

Figure 2: Semantics of the reasoning logic
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User Interface

Arend has two web-based user interfaces that support different kinds of interac-
tion with the system:

• The run-eval-print loop (figure 3) allows the user to run queries against a
specification, view the results (substitution and derivation), and view the
complete set of rules from the current specification. In figure 3 the user
has issued the query natlist(cons(z,cons(z,nil))). and is viewing the
resulting derivation (because this query has no free variables, no substitution
is displayed). The rules of the specification (the N specification, given in full
in appendix II) are displayed below the input line.

• The interactive proof assistant allows the user to construct proofs for given
propositions, in the context of a particular specification. Figure 4 illus-
trates the proof assistant interface: the rules of the current specification are
displayed in the pane on the left; since the current proof is inductive, the
inductive hypothesis is included. (Lemmas, once proved, are also displayed
as rules.)
The right pane displays the current proof statement, and the proof, here, in
progress. The user can double-click on any antecedent, or any goal, to per-
form the default elaboration for that element. For example, double-clicking
an antecedent P ∧ Q would apply the ∧-L rule, producing a subproof with
antecedents P,Q. For situations in which there is more than one possible
action (e.g., the ∨-R rules, or when backchaining against the IH), keyboard
interaction is used to select the appropriate action.
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Figure 3: The browser-based run-eval-print-
loop interface
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Figure 4: The proof assistant interface, with
an incomplete inductive proof

Figure 5: A completed proof
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Implementation

Arend is implemented as a web-based system, with a server compo-
nent, written in Prolog and running in the SWI-Prolog9 and a browser-based 9 http://swi-prolog.org

frontend. Currently, the implementation of Arend consists of

• 1,401 lines of Prolog

• 6,198 lines of Javascript (of which 442 lines are test code)

• 493 lines of PEG grammar specification

• 501 lines of HTML

• 129 lines of CSS

• 41 source code files in total

The following libraries and applications are used in the development of
Arend; these will be described in detail in the following section.

• Node.js10 10 https://nodejs.org/

• SWI-Prolog11 11 http://www.swi-prolog.org/

• Pengines12 12 http://pengines.swi-prolog.org/docs/
index.html

• jQuery13 — General utilities for Javascript in a browser environment 13 https://jquery.com/

• Lodash14 — Collection utilities for Javascript 14 https://lodash.com/

• PEG.js15 — Parsing Expression Grammar parser generator for Javascript. 15 http://pegjs.org/

• QUnit16 — Javascript test framework 16 https://qunitjs.com/

• JSCheck17 — Randomized testing engine for Javascript. 17 http://www.jscheck.org/

Arend’s development is tracked using the Fossil18 source control management 18 http://fossil-scm.org

system. As of April 18, 2015, the project history consisted of 294 commits
spanning eight months of development. Arend, its source code and project
history, can be found on the web at http://fossil.twicetwo.com/arend.pl.

Automated testing

Arend’s Javascript code is run through a test suite consisting of 133 automated
tests, however, of these, 12 central tests are randomized, running, by default, 20
randomly generated tests each. Thus, a total of 361 individual tests are run. The
test suite can be run in the browser, or offline, via Node.js. Testing is handled
via the QUnit19 test framework; a small compatibility layer was written to allow 19 https://qunitjs.com/

QUnit tests to run offline. Randomized testing is provided by JSCheck20 a 20 http://www.jscheck.org/

“port” of the Haskell QuickCheck framework to Javascript. We have extended
JSCheck with support for randomized generation of Arend data types: atoms,
variables, and ground and non-ground terms up to a limited depth.

http://swi-prolog.org
https://nodejs.org/
http://www.swi-prolog.org/
http://pengines.swi-prolog.org/docs/index.html
http://pengines.swi-prolog.org/docs/index.html
https://jquery.com/
https://lodash.com/
http://pegjs.org/
https://qunitjs.com/
http://www.jscheck.org/
http://fossil-scm.org
http://fossil.twicetwo.com/arend.pl
https://qunitjs.com/
http://www.jscheck.org/
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QUnit is designed for automated testing in a browser environment. Arend’s
development, as far as is possible, tries to target both browser and offline en-
vironments; this is true even for Javascript code. Thus, we wrote “QNodeit”, a
small compatibility layer that allows the complete suite of QUnit tests to run
offline, via Node.js. All non-user-interface tests run successfully in both the
browser and offline environments. QNodeit also integrates JSCheck into QUnit,
allowing JSCheck’s randomized tests to be used naturally within QUnit.

Client-side implementation

Although Arend’s client-side code only serves to provide a user-interface to the
backend’s proof-checking and manipulation engine, it contains a significant
amount of logic itself. Early in Arend’s development we felt that the best course
would be to implement the entire proof checking engine in Javascript, thus
allowing proof-handling with no server at all. Although this did not prove
feasible, a significant amount of logic-handling code in Javascript was written,
and, so far from being a redundancy, this has proved to be an asset. Arend’s
client is not “dumb”, but in fact understands a great deal of the structure of the
proofs it is presenting. This allows for richer user-interface possibilities, and
more flexible coordination between front- and back-end.

The Lodash21 Javascript library provides a set of general utilities, mostly 21 https://lodash.com/

aimed at manipulation of collections (arrays and objects) and enabling a func-
tional style of programming; Lodash is used extensively throughout Arend.
Lodash makes its facilities available as methods of a global _ object. Thus,
filtering out the odd elements of an array in “stock” Lodash would take the
form

_.filter([1,2,3,4], function(e) { return e % 2 == 0; });

We have created a wrapper library around Lodash called “Nodash” which
integrates Lodash’s utility methods into the global prototypes of the datatypes
which they operate on. Thus, for example, the filter method, which can be
applied to any “collection” – array, object, or string — would be installed on
the global Array.prototype, Object.prototype, and String.prototype objects,
so that it is accessible simply as

[1,2,3,4].filter(function(e) { return e % 2 == 0; });

Historically, “monkey-patching” the global
prototypes was considered highly unsafe, as
new properties would be “enumerable” and
would thus become visible in, for example,
for-in loops over the properties of any
object. However, all modern Javascript
implementations support the defineProperty
method, which allows the creation of non-
enumerate properties on objects which
do not have this problem. Nodash uses
defineProperty to safely add Lodash’s
methods to the global prototypes.

Note that in Nodash the global _ object is still available, for those methods
which do not fit with any of the global prototypes.

The client-side implementation includes a complete parser for the spec-
ification language. This allows user input to be fully syntax-checked before
being sent to the server, and allows for faster feedback to the user when syntax
errors occur. The parser is written using PEG.js22, a parsing expression gram- 22 http://pegjs.org/

mar (PEG) [Ford, 2004] parser-generator. The specification grammar in PEG B. Ford. Parsing expression grammars:
A recognition-based syntactic founda-
tion. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on
Principles of Programming Languages,
POPL ’04, pages 111–122, New York, NY,
USA, 2004. ACM. ISBN 1-58113-729-
X. doi: 10.1145/964001.964011. URL
http://doi.acm.org/10.1145/964001.964011

form consists of 28 non-terminals and 53 terminal tokens. Of note is the fact
that the grammar uses the standard Unicode character classes in its definition

https://lodash.com/
http://pegjs.org/
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of “identifier” and “operator”; an operator, in particular, is defined as any se-
quence of characters from the symbolic or punctuation classes23. This allows 23 Classes Sc, Sm, Sk, So, Pc, Pd, and Po.
for traditional mathematical operators such as ∈ or ≤ to be used directly in
specifications.

Other modules of note in the client-side implementation include:

• core — contains a small amount of compatibility code that allows the other
non-user-interface modules to operate transparently in either the browser or
Node. In particular, it provides a browser implementation of the require()
function in Node, used to load modules. In the browser, these modules
must have already been loaded via standard <script> tags (i.e., dynamic
loading is not provided), but, once loaded, they are installed into a global
module repository; require then simply returns a reference to the appropri-
ate module. This allows Javascript code to transparently access other mod-
ules, without knowing whether they are being dynamically loaded within
Node, or have already been loaded in the browser.

• terms — contains a complete representation of terms, the fundamental
datatype of logic programming. The terms module supports walking the
structure of terms, converting Prolog-style term-lists to Javascript Arrays
and vice versa, rendering terms to either specification or Prolog-compatible
strings, and enumerating the variables in a term.

• unify — contains a fully-functional implementation of the Robinson uni-
fication algorithm [Robinson, 1965]. Although this module is exhaustively J. A. Robinson. A machine-oriented logic

based on the resolution principle. Journal of
the ACM (JACM), 12(1):23–41, 1965

tested, it is currently minimally used. In the future, we hope to build a
pattern-matching utility library on it, to allow for more natural examination
and manipulation of term-structures on the client-side.

• term_render — contains the rendering engine for converting terms, rules,
and derivations to HTML structures. Note that derivation rendering is
extensible via a number of “hook” functions, which allow client code to ex-
tend or replace the rendering of the various proof components: antecedents,
consequents, disjunctive consequents, and consequents which could be the
target of the inductive hypothesis.

Server-side implementation

The core of Arend’s proof-checking engine is written in Prolog, and is made
available to the client via a HTTP interface. SWI-Prolog provides both a stan-
dard HTTP server module, as well as a specialized “app engine” module called
Pengines, both of which are used in Arend. HTML, CSS, and Javascript files
for the client-side interface are served via the standard HTTP server, while two
PEngine “applications”, repl and passist provide the interface to the proof-
checker itself.

PEngines provides a transparent interface between Javascript code running
in the browser, and Prolog code running on the server. With it, our client-side
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code can directly execute queries against the exported predicates of the two
aforementioned applications. The results (success, failure, and substitution) of
those queries can then be enumerated. Terms are encoded as JSON objects (our
terms module can decode JSON terms into its own types).

It should be noted that the Prolog implementation of Arend is mostly
portable, relying only on ISO-Prolog predicates, commonly-available libraries,
and a few SWI-Prolog-specific extensions and modules (most notably the
HTTP server module). It would not be difficult to port the proof-checker itself
to another Prolog system.

The Prolog core proof-checker implementation consists of the following
modules, the functionality of which will be described in detail in the following
sections:

• subst — provides support for working with explicit substitutions. As de-
scribed below, Arend cannot use Prolog’s own substitution, as the substi-
tutions that are applied to a proof object may differ in subtrees; Prolog
applies a substitution globally. Thus, we re-implement both variables and
substitutions for our own use.

• program — provides support for expanding atomic goals in the specification
language, and for executing goals in the specification. The run/3 predicate
produces proof objects compatible with those produced by the full proof
checker, but is an independent implementation.

• checker — the heart of the proof checking system, provides routines for
dealing with proof objects, elaborating incomplete proofs, and checking and
generating proof objects corresponding to particular statements.

Proof representation

Informally, the content of a derivation is relatively simple: a tree of -Left
and/or -Right rule applications, drawn from the rules of the reasoning
logic in figure 2. In practice, a more detailed representation is required, one
which, in particular, necessitates the use of manual substitution, rather than
the implicit substitution that would result from naive use of (for example) the
system unification in Prolog.

For derivations purely derived from the specification language, manual
substitution is not required. This is because for any valid derivation of a propo-
sition expressed in the specification language, the substitution is consistent
throughout the derivation tree; it is not possible for different “branches” to have
different substitutions. (Disjunction may, of course, result in the generation
of multiple distinct derivations, each with its own unifying substitution, but
within any single derivation there is always a single consistent substitution.)

However, because the reasoning language possesses rightward implication,
a new element is introduced to derivations: the list of antecedents. Case anal-
ysis on a disjunction antecedent is superficially similar applying the ∧-R rule,
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with an important distinction: the branches produced each have independent
bindings. Consider, for example, case analysis on nat(X) in the course of a
proof:

X = z, nat(z) ⊢ . . . X = s(X ′), nat(X ′) ⊢ . . .

nat(X) ⊢ . . .

In the left branch, the substitution is X = z; in the right, it is X = s(x′). In order for an analogous situation to arise in
the specification language, we would need to
have a conclusion X = z ∧X = s(x′), which
is already inconsistent, and actually impossible
to express, because Horn clauses forbid such
coǌunctions as conclusions. Conversely,
given the conclusion X = z ∨X = s(x′) we
have the choice of which unification to use,
and thus there is no inconsistency.

Because of this, each branch of a derivation must maintain its own substitu-
tion, applied to its goals as they are expanded. Thus, Arend contains facilities
for implementing its own notion of logical variables, unifying terms contain-
ing these variables (producing a substitution object), and applying substitution
objects to arbitrary terms.

Proofs are represented as a term of the form

proof(Goal,Ctx,Subst,Proof)

where Goal is the goal to be proved, Ctx is the list of antecedents (initially
empty for most goals), Subst is the substitution that results if the goal is
proved, and Proof is a proof term for this particular goal.

The proof terms vary, depending on the structure of the goal and the con-
tents of the context. Non-axiomatic proof terms include one or more sub-
proofs. The possible proof terms are

• induction(N,Proof) — proves a ∀ inductively, on the N-th element of the
context.

• ih(Proof) — Proves an atomic goal by backchaining it against the inductive
hypothesis.

• generic(Proof) — Proves a ∀ generically (i.e., by substituting a unique
constant for the quantified variable).

• instan(V,Proof) — Proves a ∃ by giving a value for the quantified variable.

• product([Proofs...]) — Proves a coǌunction by providing a subproof for
each coǌunct.

• choice(N,Proof) — Proves the N-th branch of a disjunction.

• implies(Proof) — Proves an implication, by adding the left-hand-side to
the context as an assumption and then proving the right-hand-side.

• ctxmem(N) — Implements the “assumption rule”; i.e., proves an atomic goal
by unifying it with the N-th element of the context.

• backchain(Proof) — Proves an atomic goal by backchaining it; i.e., by
expanding it into its definition, the disjunction of its clauses.

• unify(A,B) — Proves a goal of the form A = B (this has the side-effect of
adding the substitution produced by A = B to the Subst for this proof
subtree).
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• case(T,N,Keep,[Proofs...]) — Performs case-analysis on an element of the
context. The type T corresponds to the various -Left rules of the reasoning
logic.

• trivial — Proves ⊤.

• hole — Proves any goal, but represents an incomplete proof.

Capture avoidance

The use of manual substitution means that the proof-checker must also contend
with another troublesome problem which Prolog conceals: avoiding accidental
capture when expanding a call to a goal. Consider the goal nat(X). We would
expect this goal to succeed twice, first with the solution X = z. However, if we
naively unify this goal with the head of the Nat-Succ rule we get the solution
X = s(X) which fails the occurs check. The problem is that X as present in
our goal is not the same variable as X in the Nat-Succ rule. Variables in rule
definitions are schematic, their names should be irrelevant.

In order to enforce this, we rename variables in a clause so as to not conflict
with any variables already in scope. (Note that the expansion of a clause may
thus introduce new variables into the scope.) At the same time, we want to
avoid obscurely-generated names such as _G356 (a variable as renamed by SWI-
Prolog), in order to avoid confusing the user. Thus, we adopt a numerical
scheme for variable renaming: if a variable name X is already in scope, then we
try the names X2, X3, . . .. Under this scheme, the Nat-Succ rule succeeds with
X = s(X2) Of course, X2 is constrained to be nat(X2),

so the second real solution will be X2 =
z,X = s(z), followed by an infinite sequence
of successes, for all X ∈ N.

Capture-avoiding substitution becomes even more complex in the reasoning
language, where the quantifiers ∀S and ∃T act as binders, capturing the names
S and T , respectively, within their bodies. Thus, to apply a substitution X 7→
1 to ∀X,P (X) it is not correct to give ∀1, P (1). In addition, consider the
problem of applying the substitution X 7→ Y to ∀Y, P (X,Y ); clearly, one of
the Y ’s will need to be renamed. Since the Y in the substitution is most likely
bound somewhere else in the derivation, we choose to rename the Y bound
within the ∀.

Unification

The Robinson unification algorithm is presented, in natural deduction style,
in figure 6. Note that the same algorithm is used, with minor modification,
in both the Javascript and Prolog implementations (for a direct comparison of
these two implementations, see our comments below).

(This presentation is based in part on that in Pfenning [2006].) F. Pfenning. Logic programming. Course
notes, 2006. URL http://www.cs.cmu.edu/
~fp/courses/lp/lectures/lp-all.pdf

It is interesting to directly compare the two implementations of unification
(one of the few modules which is semantically similar in both implementa-
tions). Both systems implement the same algorithm. The Javascript imple-
mentation consists of 136 lines of non-comment code and is quite difficult to
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Wildcard _ ≡ t | ε
Var-Refl

X ≡ X | ε
Var-Atom

X ≡ a | {x = a}

Var-Term
X ̸∈ t̂

X ≡ f(t̂) | {X = f(t̂)}
Var-Swap

X ≡ t | θ
t ≡ X | θ

Term-Term
t̂ ≡ ŝ | θ

f(t̂) ≡ f(ŝ) | θ

Nil
[] ≡ [] | ε

Cons
t ≡ s | θ1 t̂θ1 ≡ ŝθ1 | θ2

(t : t̂) ≡ (s : ŝ) | θ2

Figure 6: Rules for the Robinson unification
algorithm

follow; the Prolog implementation requires only 69 lines, an almost 50% re-
duction! This despite the fact that the Prolog implementation does not use the
built-in unification to simplify the algorithm at all; it would be largely the same
if only traditional assignment were used.

Proof Checking

The proof checker is implemented in approximately 450 lines of Prolog code.
It essentially implements the rules of the reasoning logic presented in figure 2,
by recursively checking the proof tree. That is, it first checks the root node to
ensure that the proof object is consistent with the conclusion (antecedents and
consequent) by ensuring that it has the correct number and type of subproofs.
The subproofs are then recursively checked, working through the tree until the
axiomatic rules are reached (or, in the case of an incomplete proof, a hole is
found, indicating an unproved subtree).

There are two complications to a straightforward top-down recursive imple-
mentation:

• When expanding an atomic goal (i.e., a call to a predicate in the specifica-
tion) the expansion must be done in such a way that variables in the body
of the expansion do not conflict with variables already in scope. In order
to ensure this, we track the set of variables that are in scope as we proceed
through the tree, and use it to rename variables in expansions before they are
placed in the tree.

• Similarly, checking a unification requires applying the unification in a non-
trivial way. For example, in t1 = t2 ∧ P the substitution resulting from
unifying t1 and t2 will be applied to P . This is consistent with Arend’s (and,
indeed, Prolog’s) left-to-right evaluation order for coǌunctions, but does
mean that substitutions must be “accumulated” bottom-up while traversing
the tree, and then applied when appropriate.
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check is written in such a way that it can be called with the proof tree ar-
gument bound or unbound. In the former mode, it functions as a pure proof
checker. If the proof is unbound, however, it functions as an automated proof
assistant, attempting to construct a proof object for the given goal. In this
mode it can prove any proposition in the pure specification logic, and even a few
that lie outside it; these extensions include:

• Simple implications: for example, P → P can be proved.

• Proofs involving ⊥-Left, for example ⊥ → P .

• Proofs involving limited use of other -Left rules. For example, P ∧Q → P

can be proved.24 24 P ∧ Q → P produces an infinite
sequence of proofs, because the list of
antecedents, while properly speaking a set,
is implemented as a list without duplicate
removal, for efficiency reasons. Thus it is
always possible to case on P ∧ Q, keep the
original antecedent, and thus generate an
infinite collection of P ’s, each of which gives,
theoretically, a distinct proof.

More interestingly, check can be called with the goal unbound and the proof
bound, albeit for a very limited set of proofs. In this mode it will construct a
proposition which is proved by the given proof. This behavior is not unex-
pected; by the Curry-Howard isomorphism proofs are to propositions as values
are to types. Without a “type” given check functions as a limited type inference
engine, finding a type (proposition) for a given value (proof ).

Proof Elaboration

The heart of the incremental proof checking algorithm is the predicate elaborate
(defined in file checker.pl). elaborate works in coǌunction with check, the
proof checker itself. The purpose of elaborate is to take an incomplete proof,
together with a reference to one of its leaves (i.e., to a ?), and to “elaborate” it
with respect to either its consequent, or one of its antecedents. As described
above, the form of the selected element dictates the forms of the subproofs.
elaborate “fills in” these subproofs, to a single level only (i.e., all the subproofs
it constructs are themselves ?).

In a logic which did not include unification or the ability to call defined
predicates (atomic goals), we could elaborate any node of the tree, independent
of the rest of the tree. Unification and backchaining both introduce complica-
tions:

• Unification changes the substitution, which “flows” through the proof tree
in a non-trivial way. Extending substitution may have far-reaching effects on
variables in other parts of the tree.

• Backchaining a goal can only be done with the knowledge of what variables
are already in scope, because it is necessary to rename the variables within
the definition before expanding it, in order to avoid accidental capture. As
with unification, the set of variables in scope is not trivial. Although Arend In particular, every coǌunct in a coǌunction

has in scope all the variables in scope in every
other coǌunct as well as its own.

is already overly conservative in its determination of what variables are in
scope — preferring to harmlessly rename variables rather than risking a
naming collision — computing this set still requires more than traversing
the path from the root to a leaf.



arend — proof-ass istant ass isted pedagogy 21

Fortunately, there is a simple solution to both these difficulties: the proof
checker check:

• In the case of a unification, which has no subproofs, elaborate simply in-
stantiates the proof to unify(_,_) and then runs check on the resulting tree.
check will instantiate the arguments of the unify term with references to the
actual variables, while at the same time propagating the new substitution to
the rest of the tree.

• For an atomic goal expansion, elaborate will instantiate the proof to
backchain(proof(_,_,_,hole)) and then run check. The presence of the
backchain tactic will force the proof checker to apply backchaining at this
point in the proof. It will then instantiate the first three arguments to the
subproof with the (correctly renamed) expansion of the goal, the correct
context, and the correct substitution. It will likewise propagate the new set
of in-scope variables to the rest of the tree. Finally, the presence of hole
(i.e., ?) in place of the subproof will terminate the proof checker’s recursion
along this branch. (If we had left the fourth argument uninstantiated, the
proof checker would continue to search for a complete subproof for this
branch of the tree.)

The right and left rules for elaboration are given in figures 7 and 8. Proof
state terms are written with the notation

Premises ⊢ Goal→ Proof

This should be read as “Premises ⊢ Goal is proved by Proof.” We use the
notation Γ ⊢ G → ? =⇒ Proof to signify that the the ? should be filled by
Proof.

During interactive proof construction, elaboration is used to construct the
subproofs after the user has selected the element of the current state on which
they wish to act. For example, if the user selects the consequent, and it has the
form P ∧Q, then the output proof will be elaborated to

Γ ⊢ P ∧Q→ product([Γ ⊢ P → hole,Γ ⊢ Q→ hole])

The subproofs of the product will have the correct consequents and antecedents,
but their own proofs will be empty, ready for further elaboration.

Inductive reasoning

Arend’s reasoning logic supports proofs of a universal quantification both
generically and by induction. Arend’s induction is technically on the height of
derivations, although from the perspective of the user it supports full structural
induction on terms; this subsumes the usual natural number induction.

Arend supports only single-induction proofs (i.e., induction on multiple
antecedents is not allowed) and supports only induction global to a proof (i.e.,
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Trivial
Γ ⊢ ⊤ → ? =⇒ trivial

Assumption
Γ = . . . , Pi, . . . Pi = G

Γ ⊢ G→ ? =⇒ ctxmem(i)

Backchain
G is atomic , G ≡ C1 ∨ C2 ∨ . . .

Γ ⊢ G→ σ ? =⇒ backchain(Γ ⊢ C1 ∨ C2 ∨ . . .→ σ ? )

Product
Γ ⊢ G1 ∧G2 ∧ . . . Gn → ? =⇒ product([Proof1,Proof2, . . . ,Proofn])

(where Proofi = Γ ⊢ Gi → ? )

Choice
Γ ⊢ G1 ∨G2 ∨ . . . Gn → ? =⇒ choice(i,Γ ⊢ Gi → ? )

Implies
Γ ⊢ P → Q→ ? =⇒ implies(Γ, P ⊢ Q→ σ ? )

Unifies
Γ ⊢ t1 = t2 → ? =⇒ unifies(t1, t2)

(t1 is unified with t2 and the result is merged with the current substitution)

Induction

IH = (P1 ∧ P2 ∧ . . . P ↓
i . . .→ G)

IH is added to the specification
Γ ⊢ (P1 ∧ P2 ∧ . . .→ G)→ ? =⇒ induction(i, IH,Γ ⊢ (P1 ∧ P2 ∧ . . . P ↑

i → G)→ ? )

(Induction will never be elaborated into an unbound proof; it can only be checked
against an existing proof )

IH
IH = (P1 ∧ P2 ∧ . . . P ↓

i . . .→ G)

Γ ⊢ G→ ? =⇒ ih(Γ ⊢ (P1 ∧ P2 ∧ . . . P ↓
i . . .→ G)→ ? )

Generic c is a fresh constant
Γ ⊢ ∀x : G→ ? =⇒ generic(Γ ⊢ G[x=c] → ? )

Instan
Γ ⊢ ∃x : G→ ? =⇒ instan(t,Γ ⊢ G[x=t] → ? )

Notes:

• For simplicity, The Atomic rule elides the details of unifying the goal G
with the heads of the definitions and applying the resulting substitutions to
the clauses Ci.

Figure 7: Right rules for elaboration of proof
states
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All left-rules instantiate the Proof to a term of the form

case(Type, N,Keep, [Proofs . . .])

In the rules below we leave N (the index in the list of antecedents of the judg-
ment to be cased upon) implicit and omit Keep (a Boolean flag indicating
whether the targeted antecedent should remain in the list, or be removed), and
write them as

Type(Proofs . . .)

False-Left
Γ,⊥ ⊢ G→ ? =⇒ false_left()

And-Left
Γ, P1 ∧ P2 ∧ . . . ∧ Pn ⊢ G→ ? =⇒ and_left(Γ, P1, P2, . . . , Pn ⊢ G→ ? )

Or-Left
Γ, P1 ∨ P2 ∨ . . . ∨ Pn ⊢ G→ ? =⇒ or_left(Proof1,Proof2, . . . ,Proofn)

(where Proofi = Γ, Pi ⊢ G → ? )

∀-Left
Γ, ∀x : P ⊢ G→ ? =⇒ forall_left[t](Γ, P[x=t] ⊢ G→ ? )

∃-Left c is a fresh constant
Γ, ∃x : P ⊢ G→ ? =⇒ exists_left(Γ, P[x=c] ⊢ G→ ? )

Unify-Left
Γ, t1 = t2 ⊢ G→ ? =⇒ unify_left(Γ[t1=t2] ⊢ G[t1=t2] → ? )

Backchain-Left
P is atomic P ≡ C1 ∨ C2 ∨ . . . ∨ Cn

Γ, P ⊢ G→ ? =⇒ backchain_left(Γ, C1 ∨ C2 ∨ . . . ∨ Cn ⊢ G→ ? )

Figure 8: Left rules for elaboration of proof
states

nested inductions are not allowed, although they can be “faked” by using lem-
mas). These restrictions imply that the induction hypothesis can be regarded
as being global to a proof, thus eliminating the need to restrict the scope of
difference induction hypotheses to different branches of the proof tree.

Internally, induction is implemented by goal annotation [Gacek, 2009, sec.
5.2]. When an inductive proof is declared, a particular goal in the antecedents A. Gacek. A Framework for Specifying, Pro-

totyping, and Reasoning about Computational
Systems. PhD thesis, University of Minnesota,
September 2009

is selected, by the user, to be the target of the induction. This goal must be a

For example, in a proof of nat(X) ⊢
add(X, 0, X) we would induct on nat(X).

user goal; it cannot be a built-in operator such as coǌunction, disjunction, or
unification. The functor of the goal is internally flagged as being “big” (indi-
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cated as ↑) and the induction hypothesis is defined in terms of the same goal,
but flagged as “small” (↓). For example, to prove that nat(X) → add(X, 0, X)

our proof would proceed by induction on nat(X), and thus we would have the
inductive hypothesis nat↓(X)→ add(X, 0, X).

When a ↑ goal is expanded by case analysis or backchaining, any sub-goals
in its expansion are flagged as ↓, indicating that they are “smaller” than the
original goal. The induction hypothesis can only be applied to goals which are
“small”, thus enforcing the inductive restriction.

Under this scheme, the induction hypothesis can be viewed as simply an-
other clause in the program. Thus, the IH presented above is added as
”IH”: add(X,0,X) :- nat↓(X).

with the (internal) restriction that the IH will never be used without explicit
action on the part of the user. Lemmas, once proved, are represented similarly,
as new program clauses, but requiring explicit use.

A somewhat unfamiliar aspect of Arend’s use of induction is how the in-
ductive hypothesis is applied: ordinarily we would specify those antecedents of
the current proof state which matched the corresponding antecedents of the IH
(i.e., “apply IH to nat↓(X ′)”); this would have the effect of introducing the
IH, with the appropriate substitutions, as a new antecedent, where the assump-
tion rule could then use it to prove the conclusion. Purely for user-interface
reasons, we apply the IH by backchaining it against the current conclusion, re-
placing the goal with the coǌunction of the antecedent of the IH (again, with
the appropriate substitutions). The user can then use the ∧-R rule to split the
proof into subproofs with atomic goals, each of which can be proved by the
assumption rule.

The inductive hypothesis is used within a proof by backchaining on the cur-
rent goal, which must unify with the head of the IH. Recall that backchaining
replaces the goal with its definition⒮. Ordinarily the disjunction of all defini-
tions is used, but when the IH is specified, only the IH will be supplied; this
prevents the user from having to “throw away” all the normal disjuncts which
are unimportant in an inductive proof. As an example of an inductive proof, we
present the aforementioned proof of nat(x)→ add(x, 0, x):

IH
nat↓(x)

add(x, 0, x)

By induction

→R

Case
Add-0

add(0, 0, 0)
Backchain

IH
nat↓(x′) ⊢ nat↓(x′)

nat↓(x′) ⊢ add(x′, 0, x′)

nat↓(x′) ⊢ add(s(x′), 0, s(x′))

nat↑(x) ⊢ add(x, 0, x)

nat↑(x)→ add(x, 0, x)

nat(x)→ add(x, 0, x)

(This example also demonstrates one of the flaws of the derivation proof for-
mat, its insatiable appetite for horizontal space.)
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It is interesting to note what happens when induction is applied to a non-
terminating definition such as

∞
repeat(x)

repeat(x)

If we wish to prove, inductively, that repeat(x) → P for any P , we have the
inductive hypothesis repeat↓(x)→ P and the following derivation:

∞

IH
repeat↓(x) ⊢ repeat↓(x)

repeat↓(x) ⊢ P

repeat↑(x) ⊢ P

From a non-terminating definition we can inductively prove anything! So far
from being a flaw in our system, this surprising result reflects the fact that one
computational interpretation of ⊥ is that of a non-terminating computation. In
fact, this result is simply the computational analogue of the well-known ex falso
quodlibet principle of classical logic.
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Future work

There are many areas in which Arend could be enhanced and extended. We
examine ten possibilities here, including one, equational reasoning, in some
depth.

• Arend’s specification logic is simple enough that formalization of its prop-
erties should not be difficult, nonetheless, for formal correctness and con-
sistency work needs to be done to show that it is both sound (everything it
proves true is true) and non-deterministically complete (when it cannot find a
proof none exists). Note that, for a Turing-complete specification language
like ours, it is not possible to prove that the language is complete; i.e., that
everything true is provable. Some logically-valid proofs will fail to terminate.
More challenging is the task of proving that the reasoning language is ad-
equate for proving propositions about the reasoning language. This implies
proving that the specification language and its semantics can be embed-
ded in the reasoning language, and that the various meta-level operations
correctly preserve these semantics.

• Although we originally envisioned the specification logic as solely the do-
main of the instructor, there is no reason why, with some work, it could
not be exposed to students as well, for the construction of their own spec-
ifications. This would lead Arend beyond its original goal of creating an
environment for the student construction of proofs, into that of a proper
proof assistant, with all levels of the system usable by all its users. In our
experience, students’ first exposure to declarative programming is often quite
challenging; although Arend’s specification logic is significantly simpler
than Prolog, it remains to be seen whether programming-in-logic can be
effectively and usefully presented to students at this stage.

• Currently Arend allows specification authors minimal influence on the user
interface; their power is limited to declaratively describing how certain pred-
icates should be rendered as HTML. For more complex specifications, this
is insufficient. As an example, classical logic can be specified in Arend with
relative ease, via a predicate solve: solve(C,G,T) succeeds if the proposi-
tion G evaluates to the truth value T in context C. However, none of the
familiar operations for manipulating the consequent and antecedents can be
used with this specification, as they are “hidden” inside the arguments to
a predicate. A system allowing specification authors to highlight terms in
various contexts as targets for user-manipulation would greatly extend the
ease-of-use of the system when dealing with non-trivial specifications.

• Many proof assistants allow the user to create tacticals, “shortcuts” through
the proof process or alternate reasoning strategies. A cursory glance at the
check/3 predicate at the heart of Arend’s proof-checking algorithm will reveal
a significant amount of similarity between the various cases: to apply a -Left
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or -Right rule, we apply some kind of transformation⒮ to either one of
the antecedents or the consequent, and then recursively check zero or more
of these transformed subproofs. Tacticals allow the user to specify these
transformations themselves, in a way that enforces their consistency with
the underlying logic. For some specifications, tacticals could significantly
simplify the development of otherwise-tedious proofs, by concealing the
irrelevant details.

• In a similar vein, Arend currently requires the user to proceed through all
steps of a proof. However, often this is not necessary; as can be seen from
the specification logic, goals which lie entirely in the specification logic can
be automatically proved in their entirety! There are several other classes of
automation that could also be applied. However, the desire for simplicity
and avoidance of tediously-obvious proofs must be balanced against the ex-
plicability of the system; some proof assistants are notorious for “magically”
completing proofs while giving the user no indication as to how the final
steps of the proof proceed. In addition, as Arend targets education, not all
instances of automation are suitable for all levels of student usage. Some
kinds of automation may be suitable for beginning students (e.g., those
that conceal the more complex elements of the system), while other kinds
may be more suitable for advanced students (e.g., those that do away with
now-obvious steps in the proof ).

• The creation of lemmas, and their use in proofs, is currently minimally
specified. Although the exact semantics are dictated by the underlying logic,
there are a number of questions about presentation and interaction that
are currently unresolved. We envision lemmas being applied in a manner
similar to the inductive hypothesis, by backchaining on the conclusion.
Since one of the difficulties of the derivation-tree proof format is its often-
extravagant use of horizontal space, it should be possible to automatically
extract a sub-proof as a lemma. This could be done even when the lemma is
not generally useful, but simply as a way of “naming” a portion of the proof
or commenting on its purpose.

• The implementation of Arend is primitively minimal, suitable only for
small-scale usage. Real-world usage would require integration with existing
grading systems and automatic checks of student-submitted proofs. On
a higher level we could easily imagine a set of features aimed at creating
an ecosystem around student-created specifications, proofs, and lemmas,
perhaps with collaboration features for multi-student use.

• Although we believe Arend’s derivation-tree presentation of proofs has dis-
tinct advantages over the traditional paragraph format, there is no reason
why an alternate user interface could not present proofs in that form, allow-
ing users who feel more comfortable with a textual presentation to navigate
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their proofs in that way. Users could easily switch between the two pre-
sentations, and any other future presentations that might be added, even in
the middle of a proof. Indeed, given the hierarchical structure of proofs, it
is entirely possible that the two notations could be mixed within a single
proof. The outer elements of a proof might be in paragraph form, while the
individual cases were presented as derivations, or vice versa.

• The absense of any form of negation in our specification logic is sometimes
a source of annoyance for authors, in particular, when the negation of a
predicate has an obvious definition (for example, < negated is ≥). The two
common “solutions”, either implementing the predicate and its negation
separately, or adding an extra argument which emits a true/false value,
are less than satisfactory.25 A more interesting solution would be to add an 25 In particular, the latter typically requires

implementing the rest of classical Boolean
logic, in order to be able to work with these
explicit Boolean values.

explicit negation operator to the specification and reasoning languages which
was limited to application to predicates which had previously been declared
negatable, with an implementation of the negated predicate given explicitly.
But it seems likely that some amount of inconvenience is unavoidable, simply
because negation in a constructive logic functions differently from classical
negation.

Equational reasoning

One very large extension to the logic which we would like to investigate would
be the incorporation of equational reasoning. Arend’s current concept of equality
is based entirely on unification: two terms are equal if they can be made equal
by some substitution. Equational reasoning allows equality to be defined via
rules, for example For computational purposes equational rules

are often regarded as unidirectional rewrite
rules: a = b becomes a 7→ b.

=-Refl x = x =-Symm
x = y
y = x =-Trans

x = y ∧ y = z
x = z

It should be emphasized that in equational reasoning these rules, and others,
need not be “built-in” to the system but can be part of any specification that
requires them. For example, for reasoning over addition and multiplication we
might have the rules

×-dist-+
a× (b + c) = a× b + a× c

Equational reasoning is a particularly powerful mechanism for reasoning
about functional programs and programming languages; we can state equiva-
lences between expressions and then prove that two programs, or two classes of
programs, are equivalent under those rules. Even more powerfully, if we wish
to prove some property of an entire language, it is sufficient to show that the
equivalences preserve that property.

Although the addition of equational reasoning to Arend would give the sys-
tem a marked increase in logical power, it would also correspondingly increase



arend — proof-ass istant ass isted pedagogy 29

the complexity of its implementation and presentation. Equivalence rules re-
quire a different treatment of terms and variables from unification, and it is not
entirely clear how the two will interact, logically. Equivalences over programs
require careful handling of binders, language constructs that introduce new
(program) variables into scope. These variables are distinct from the logic vari-
ables, but can both contain, and be contained by, them. Although logics exist
which provide support for reasoning about binding structures [Miller and Tiu,
2005] their usage in proofs involves additional complexity that may be at odds D. Miller and A. Tiu. A proof theory for

generic judgments. ACM Transactions on
Computational Logic, 6(4):749–783, October
2005

with our goal of use in introductory curriculum.
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Appendix I: Syntax of the Specification Logic

The following is a simplified presentation of the grammar of
the specification language. In particular, precedence rules for infix operators
have been omitted, but are consistent with normal usage. Note that while the
grammar includes rules defining infix arithmetic and comparison operators,
these operators have no semantic significance within the specification logic.
They are present under the assumption that specifications may want to use
them, and will expect them to have their normal precedence ordering.
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⟨start⟩ ← ⟨definitions⟩?

⟨definitions⟩ ← ⟨definition⟩ ⟨definitions⟩ ∗
⟨definition⟩ ← Rulename? ⟨predicate⟩

| ⟨infix-decl⟩

⟨infix-decl⟩ ← “infix” (Atom | Symbol)

⟨predicate⟩ ← ⟨term⟩ “.”

⟨term⟩ ← ⟨infix-term⟩
⟨infix-term⟩ ← ⟨term⟩ “:-” ⟨term⟩

| ⟨term⟩ (“;” | “|”) ⟨term⟩
| ⟨term⟩ (“,” | “&”) ⟨term⟩
| ⟨term⟩ “=” ⟨term⟩
| ⟨term⟩ ⟨user-op⟩ ⟨term⟩
| ⟨term⟩ ⟨comparison-op⟩ ⟨term⟩
| ⟨term⟩ ⟨arith-op⟩ ⟨term⟩
| ⟨prefix-term⟩

⟨comparison-op⟩ ← “<=” | “<” | “>=” | “>” | “==” | “!=”
⟨arith-op⟩ ← “+” | “-” | “*” | “/” | “%” | “^”

⟨prefix-term⟩ ← (“-” | “!”)
| ⟨base-term⟩

⟨base-term⟩ ← ⟨compound⟩
| “[” ⟨termlist⟩? “]”
| “(” ⟨term⟩ “)”
| Atom
| Variable

⟨compound⟩ ← Atom “(” ⟨termlist⟩ “)”
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Appendix II: Specification for N, lists

The following is an example specification included with Arend,
one which desribes natural numbers with addition and the > relation, and
lists of natural numbers, with the operations of list concatenation, length, and
element testing.

”Nat-z”: nat(z).
”Nat-succ”: nat(s(N)) :- nat(N).

”Add-z”: add(z,X,X).
”Add-succ”: add(s(X),Y,s(Z)) :- add(X,Y,Z).

”GT-z”: s(_) > z.
”GT-succ”: s(X) > s(Y) :- X > Y.

”NL-nil”: natlist(nil).
”NL-cons”: natlist(cons(N,L)) :- nat(N), natlist(L).

”Cat-nil”: cat(nil,L,L).
”Cat-cons”: cat(cons(N,L), L1, cons(N,L2)) :- cat(L,L1,L2).

”Len-nil”: nlen(nil,z).
”Len-succ”: nlen(cons(_,L),s(M)) :- nlen(L,M).

”Elem-cons”: elem(E,cons(E,_)).
”Elem-tail”: elem(E,cons(_,L)) :- elem(E,L).

Although simplistic, this specification is already suitable for use in proving
several interesting properties, for example:

• nat(X)→ add(X, z,X). This will require induction on nat(X).

• Commutativity of add: nat(X)∧ nat(Y )→ add(X,Y, Z)∧ add(Y,X,Z ′)∧
Z = Z ′.

• Totality of add: nat(X) ∧ nat(Y )→ add(X,Y, Z) ∧ nat(Z).

• Functionality of add: nat(X) ∧ nat(Y ) ∧ add(X,Y, Z1) ∧ add(X,Y, Z2)→
Z1 = Z2.

• Transitivity of >: nat(X)∧ nat(Y )∧ nat(Z)∧X < Y ∧Y < Z → X < Z.

• Cons is idempotent:
natlist(L) ∧ elem(N,L) ∧ nat(N ′) ∧ L′ = cons(N ′, L)→ elem(N,L′)
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