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Preliminaries – Haskell

Syntax

Comments in Haskell take two forms:

• Single-line comments (similar to //-style comments in C/C++/Java) start
with -- and extend to the end of the line. E.g.,

-- This comment extends to the end of the line.

Note that in Haskell you can define your own operators, and it is perfectly
acceptable to define an operator that starts with --, as long as it continues
with some other operator-like character. E.g., we could define

(-->) :: Int -> Int -> Int
a --> b = a*a + b*b

Some editors, however, will not be aware of this and may show everything
aಏer the start of the --> as a comment.

• Multi-line comments (similar to /* ... */) start with {- and end with -}.
Note that multi-line comments can nest, unlike in C/C++/Java. E.g., this is
perfectly valid:

{-
This is commented out
{- So is this -}
This is still commented out

-}

Identifiers (functions, variables, types, etc.) are subject to a few rules regard-
ing their names:

• Variable and function names must start with a lowercase letter, but may be
followed by upper- and lower-case letters, numbers, underscores, or the
apostrophe. The latter is commonly used to show that one variable is a
slightly different version of another. E.g.,

if a == a' then ...



௱ఀ௹௯௬௸௰௹௬௷ ௺௱ ௮௺௸ఀ௰ ௮௴௰௹௮௰ — ௷௰௮ఀ௰ ௹௺௰ 2

The exception to this rule are operator-style functions, which, as shown
above, have to start with some kind of symbol character (-, *, etc.).

• Identifiers starting with uppercase letters are reserved for module names,
types, type classes, and type constructors.
Note that this conflicts with our usual mathematical custom of writing the
names of sets in uppercase. Usually we will get around this by writing sets or
lists with a plural ‘s’ at the end. E.g., the set A will become as (“more than
one a”). Bear this in mind when translating math into Haskell; you’ll have to
do some renaming, so be consistent about it.

• The two type constructors you will probably see most ಎequently are True
and False, both of type Bool. These are, as you might expect, the boolean
constants. Note that they must start with uppercase T and F! If you write
true by accident you will get an undefined identifier error.

Literal values:

• Integer and floating-point values look like you’d expect:

1
105
0.5
-12.4

But note that there is an unfortunate ambiguity with the unary minus, so
oಏen it’s safer to write (-12.4) with explicit parentheses.

• Character literals are enclosed in single-quotes (forward quotes; backquotes
do something different):

'a'
'b'

Note that Haskell supports Unicode, so you can use fancy characters if you
want.

• String literals are enclosed in double-quotes:

"Hello, world!\n"

As shown, the usual backslash escapes for special characters are supported.
In Haskell, strings are just lists of characters (i.e., of type [Char]), so techni-
cally a string literal is just another form of a list.

• List literals have two forms, explained in detail below, in the section on lists.
Some examples:
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[1,2,3,4]
1:2:3:4:[] -- Same as the previous
1:(2:(3:(4:[]))) -- Also the same
1:2:[3,4] -- Still the same

• Tuples consists of multiple values, of possibly different types, in parentheses.
Tuples are explained more fully below, but here are some examples:

(1,"hello") -- A "pair" of type (Int, [Char])
(3.14,[True,False],"potato") -- A "triple" of type (Float, [Bool], [Char])

• Function values are explained in detail below, but they begin with a back-
slash, followed by arguments, followed by ->, followed by the body:

(\x -> x) -- The identity function
(\v -> v+1) -- The successor function
(\x y -> x + y) -- This is the same as the function (+)

Any function can be treated as an infix operator, and any infix operator can
be treated as a function, as you find it convenient:

• If f is a function of two arguments then

f a b

is exactly the same as writing

a `f` b

• If + is any infix operator, then

a + b

is exactly the same as writing

(+) a b

This is mostly useful in situations not where you are calling (+) as a func-
tion, but where you are storing it in a variable, or passing it as an argument
(see the section on “First Class Functions” below for examples).

Layout: Indentation is significant in Haskell, meaning that it affects the
meaning of your code. Generally speaking, if a line is indented more than the
previous line, then it is treated as being part of a new block (this is similar to
the layout rule in Python). The block ends with the next line that is unin-
dented (indented less than its parent). An example:
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f x = x + 1
g y = y * 2

This would not work if we wrote it as

f x = x + 1
g y = y * 2

because now the definition of g appears to be nested inside that of f, some-
how. This is actually a common problem, where the definitions are separated by
enough space to make the extra indentation less noticable. Always check your
definitions to make sure they are flush leಏ!

If you find the layout-based structure problematic, Haskell also has an
explicit block syntax that should be more familiar:

let {
x = 1;
y = 2;
} in
x + y

(Note that the expression following the in must still be indented, or you
could put it on the same line as the in.)

The only places where layout really matters are:

• Aಏer let but before in
• Aಏer of (i.e., aಏer case ... of)
• Aಏer where

Thus, these are the only situations where the block syntax will really help.
Some additional examples of block syntax:

case x of {
1 -> "Hello";
2 -> "Goodbye";
}

f x = x + y + z
where {

y = 4;
z = 2;
}

(The crazy indentation is just to show that it doesn’t matter in a block; in
reality you should try to make your code readable.)

Note that you can use a semicolon anywhere where a newline would nor-
mally occur. E.g., you can put multiple definitions on a single line if you like:

x = 1; y = 2; z = 3;
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Haskell File Structure

A Haskell file typically has the extension .hs. A Haskell file can optionally
begin with some module imports, followed by definitions. (Note that, as in Java,
any module imports must appear before all definitions; you cannot mix and
match imports and definitions throughout the file.) A module import looks like
this

import Data.List

Haskell uses a hierarchical module structure: here we are importing the List
module, which is nested inside the Data module. An unqualified import will
load in every definition provided by the file. We can quali௫ the import if we
only want to load in specific definitions:

import Data.List (permutations, subsequences)

This will only import the two functions permutations and subsequences.
Definitions in Haskell have the (very) general form of some identifier, op-

tionally some argument pattern⒮, a literal =, and then the body of the defini-
tion. For example,

x = 10
f x = x + 2
first_two (x1:x2:xs) = x1 + x2
squared_dist a b = a^2 + b^2

A definition can optionally be preceded by a type declaration. This consists
of the name of the definition, followed by ::, followed by a type:

x :: Int
x = 10

f :: Integer -> Integer
f x = x + 2

first_two :: [Int] -> Int
first_two (x1:x2:xs) = x1 + x2

squared_dist :: Num a => a -> a -> a
squared_dist a b = a^2 + b^2

If the type is omitted, Haskell will figure it out for you. But if you give
a type, Haskell will still figure out the type, and then check it against the
type you gave. This is a good way of “checking your work”; if you and Haskell
disagree about the types, probably something went wrong someplace.

The forms that a definition can take are quite varied:
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• A single definition can have multiple clauses, each matching a different
pattern. We’ve already seen this in recursive list functions: we have a clause
for the empty list, and then another clause for the cons. Haskell will try to
match the actual argument⒮ against the clauses’ patterns in the order they
are given; the first one to match is used.

• A single clause of a definition can have guards. Guards allow a single clause
to be split into multiple cases, with the case chosen depending on some
boolean conditions. For example, here is a function which clamps the value
of its first argument to be >= its second and <= its third:

clamp :: Int -> Int -> Int -> Int
clamp x a b | x <= a = a

| x >= b = b
| otherwise = x

otherwise is just a synonym for True, acting as an “else” case. If none of the
guards succeed, then the entire clause is treated as a failed pattern match.

• A clause can have local definitions via where:

f x = x + x2 - z
where

x2 = 2 * x
z = 12

These local definitions are full definitions in their own right: they can have
types, multiple clauses, guards, even nested wheres! The only difference is
that definitions in a where are only visible within the body of their attached
definition (e.g., above, you cannot refer to x2 and z anywhere but in the
definition of f ).

• If Haskell gets to the end of the list of clauses and none of them has
matched, then it will throw an “inexhaustive match” error.

Patterns

Patterns are what follow the name of a definition on the leಏ-hand side. Al-
though simple argument patterns like

f x y = ...

are not too hard to understand (f takes two arguments, named x and y
within its body), argument patterns can in fact be quite complex and expressive.
(Note that for functions with multiple arguments, each argument gets its own
pattern.) The forms of patterns are:
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• A variable, e.g., f x y as above. A variable matches anything, and will result
in the matched value being bound to the name of the variable, within the
body of the definition.

• The wildcard variable _. _ matches anything, but does not bind any name to
the value. You can use this for arguments that you don’t care about; e.g., in
our length function, we did not use the value of x in the cons case, so we
could have written it as

mylen (_:xs) = 1 + mylen xs

• A literal value, which must match exactly, and does not bind any names.
E.g., in the factorial function, the base case is

fact 1 = 1

This clause will only match if the actual argument is ⒈

• A data constructor. We’ve already seen one of these, the cons constructor:

mylen (x:xs) = ...

This will match the non-empty list case, and will also split the list into its
head and tail, and bind x to the head and xs to the tail. This can be done
with any data constructor, including those for data types you create yourself:

data NameOrNumber = Name String | Number Int

isName :: NameOrNumber -> Bool
isName (Name _) = True
isName (Number _) = False

Data constructors can also contain nested patterns. As shown above, we can
use _ within a constructor. You can even next data constructors within data
constructors:

addFirstTwo :: [Int] -> Int
addFirstTwo (x1:(x2:_)) = x1 + x2

Remember that [a,b,c] is just shorthand for a:b:c:[] (which in turn is
equivalent to a:(b:(c:[]))), so you can use patterns of the form [a,b,c,...]
to match a list of specific length. (And again, the elements of this list pat-
tern could themselves be nested patterns!)

• An “as” pattern. Sometimes you want to break up a data constructor (e.g.,
extract the head and tail of a list) but also have access to the complete origi-
nal value. An @ pattern does just this:
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f l@(x:xs) = ...

Here, x and xs will be bound to the head and tail as usual, but l will also be
bound to the entire original list.

Expressions

While Haskell files consist of definitions, the body of every definition must be
an expression. Hence the structure of expressions is very important. (Note that
when we talk about “builtin” operators and functions, we are actually refering
to the set of operators/functions defined in the Haskell Prelude. The Prelude is
a special module that is automatically imported by every Haskell file; it is also
automatically available in GHCi.)

Operators: Haskell supports the usual collection of arithmetic operators:

+ - * / ^

These are defined on all “numeric” types (i.e., types implementing the Num
typeclass; see below for a description of what typeclasses are).

Comparison operators are similarly available:

> < >= <= == /=

The ordering operators (less-than, etc.) are defined on types implementing
Ord, while the (in)equality operators are defined on types implementing Eq.
(Note that all numeric and character types implement both of these; structured
types like lists and products also implement == and !=.) All of these return a
Bool result.

Two other pseudo-comparison functions are min and max. These do what
you’d expect, returning the minimum/maximum of their two arguments (which
must be Ord-erable).

Built-in boolean operators are as you would expect:

&& || not

Note that not is just a normal one-argument function, not a special operator.
All of these take Bool arguments, and return a Bool as well.

Signalling errors: If something does not make any sense whatsoever, you can
throw an error: error is a built-in function of type String -> a. Note that
it’s return type is a, completely unspecified. This means that you can use error
anywhere, in any type of expression. As soon as it is evaluated, the error will
print the String you give it and then abort your program. E.g.,

x = 1 + error "Whoops!"

Evaluating x will cause the error to be thrown.
The other magical error value is undefined. We use this in labs to signal

parts of the file which you are supposed to fill in. undefined has type a, so you
can use it anywhere, but like error, attempting to evaluate it will abort your
program and print an error message.
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Control Structures

In a language like C/C++/Java, control structures are procedural in nature:
they affect the order in which things happen. In Haskell, control structures are
expressions: they return values.

if-then-else:

if x == 12 then "Hello" else "Goodbye"

The general form is

if condition then
true_expression

else
false_expression

The condition must be of type Bool, and both the true_expression and the
false_expression must be of the same type. Note that if-then-else is “lazy”:
only one of true_expression and false_expression will be evaluated; the
unused branch is not evaluated.

Note that since if-then-else is an expression you can do things like

12 + (if odd x then 1 else 2) * y

case:

case x of
12 -> "Hello"
_ -> "Goodbye"

(This has exactly the same effect as the example if-then-else above.) case is
roughly Haskell’s equivalent to switch in C/C++/Java. It solves the problem of
nested if ’s becoming cumbersome, by allowing multiple branches. All of the
patterns (to the leಏ of the ->) must have the same type, the type of x, and all of
the return values (to the right of ->) must have the same type.

Note that the “conditions” on each branch (12 and _ above) can actually be
arbitrary patterns, so you can do something like

case l of
[] -> 0
(x:_) -> x

If you want to write a case on a single line, you’ll have to use semicolons to
separate the cases:

case x of 12 -> "Hello" ; _ -> "Goodbye"

As with if-then-else, case is an expression and can be used anywhere where
a value or expression is needed:



௱ఀ௹௯௬௸௰௹௬௷ ௺௱ ௮௺௸ఀ௰ ௮௴௰௹௮௰ — ௷௰௮ఀ௰ ௹௺௰ 10

1 + (case x of 'A' -> 0 ; 'B' -> 1 ) * z

let-in:
let..in is Haskell’s version of local variable definitions, but with a significant

twist. let lets you bind some names to some expressions (and do pattern-
matching in the process, if you like), and thus is useful for either labeling some
values according to their function, or abstracting out repeated calculations for
efficiency:

let x = huge_calculation in x*x + x

Rather than perform the huge_calculation three times, we perform it
once, call the result x, and then compute x*x + x (which would otherwise
require three evaluations of huge_calculation). But again, let..in is still an
expression, so you can do things like

x * (let x' = x + 12 in x*y) + z

let..in can bind more than one name:

let x = 12
y = length "Potato"
z = [1..]

in
x + y + head z

Later names can refer to earlier ones:

let x = 12
y = x + 1
z = y ^ 2

in
x + y + z

You can even use let..in to bind functions locally:

let f x = x^2
in

f 5

Lists

Lists are so useful in Haskell that they have a number of different forms. The
“cons” form of a list looks like this:

1:2:3:4:[]

Note that because the : operator associates to the right, this is equivalent to
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1:(2:(3:(4:[])))

If you want to put a single element on the ಎont of a list, you can “cons” it
on:

1 : [2,3,4]

(try typing this into GHCi!) evaluates to

[1,2,3,4]

If you want to treat a list like a stack, then this is your “push” operation.
A lot of times we want to construct a list ಎom a range of values. For exam-

ple, [1,2,3,4] is the list of Int values between 1 and 4 (inclusive). We can write
this more succintly as just

[1..4]

This will work with any element type that supports Enum. For example:

['a'..'h']

gives

"abcdefgh"

We can vary the “step” if we like:

[1,3..10]

gives

[1,3,5,7,9]

Note that if you want to count “down”, you must provide a decreasing step:

[4..1]

gives

[]

What you really want is

[4,3..1]

We can even use this to construct infinite lists:

[1..]

gives the (infinite) list
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[1,2,3,4,...]

Similarly,

[1,1..]

gives the infinite list of 1s:

[1,1,1,1...]

(A better way to construct an infinite list of a single value is to use repeat:

repeat 1

gives

[1,1,1,1...]

The difference is that [a,a..] requires the type of a to support Enum, while
repeat can be used to repeat values of any type.)

Sometimes we want to build a list out of another list, by applying some
operation to its elements. For example suppose we want the list of the squares
of the integers ಎom 1 to ⒋ I.e., we want to take [1..4] and ಎom it square each
element, producing [1,4,9,16]. We can do this with a list comprehension:

[x^2 | x <- [1..4]]

The leಏ-hand side (to the leಏ of the vertical bar) is the expression that is
used to compute the elements of the new list. The right-hand side specifies
where the original elements come ಎom. So here, x will be bound to an element
of [1..4], xˆ2 will be computed, and the result saved in the corresponding
position of the output list.

If we want, we can filter the values according to some criteria:

[x^2 | x <- [1..10], even x]

This will give the squares of only the even numbers between 1 and ⒑ But
note that Haskell will keep “running” the list comprehension as long as the list
generating x produces values. E.g., you might think you could do something
like this:

[x^2 | x <- [1,2..], x <= 10]

and the list would stop aಏer x == 10, but in fact it will run forever. Haskell
doesn’t know that, aಏer x == 10, there won’t, eventually, be another x that is <=
10, so it keeps on trying. Running forever makes Haskell sad; do you want to
make Haskell sad?

You can also “drive” a list comprehension with more than one generator list:

[x+y | x <- [1,2], y <- [10,20]]
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gives

[11,21,12,22]

(Can you see why?) You can think of this as a generalization of the notion of
a “cross product” over all the input lists. Strangely enough, you can even “drive”
a list comprehension with no generators:

[x | x < 10]

In this case, x must already be defined. If the condition is True, this will
evaluate to [x]; if it is False it will evaluate to []. Sometimes it may be useful to
construct a zero-or-one element list, based on some condition; this is an easy
way to do just that.

“Collapsing” lists: oಏen we will want to take a list and collapse it down to a
single value. For example, we might want to find the sum or product of a list of
numbers, or maybe, given a list of Bools, determine whether they are all True.
Haskell has a number of “aggregate” functions that do things like this:

• sum – Sums the elements of the list

• product – Finds the product of the elements of the list

• maximum – Returns the largest element of the list

• minimum – Returns the smallest element of the list

• and – Returns True if every element of the input list is True (i.e., it &&s all
the elements of the input list together).

• or – Returns True if any element of the input list is True (i.e., it ||s all the
elements together)

Product Types

We mentioned tuples above and showed have they have a type built ಎom ,; the
, type is called a product type. A product type can be thought of as somewhat
like a struct in C/C++: it aggregates together multiple values of different types,
but the overall structure (the component types, their number, and order) is fixed
at compile time. A product type is like a struct in which the elements are
unnamed, they just have their relative ordering:

(1,"Hello") -- A value of product type (Int,String)

Tuples are useful when you want to pass around multiple values as if they
were a single object. For example, you can use a tuple to return two values ಎom
a function:

minMax :: [Int] -> (Int, Int)
minMax l = (minimum l, maximum l)
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In the arguments to a function, you can pattern-match against a tuple to
extract the components:

f :: (Int, String) -> Int
f (i,s) = i + length s

Although this looks like a “normal” function in C/C++/Java, do not be
deceived (and don’t write all your functions to take tuples, just because they
look familiar). A tuple is still a single value, so we can do the following:

f x -- Provided that x has a value of type `(Int, String)

But of course, we can also construct the required tuple on-the-fly, ಎom
values of the component types:

f(userid,username)

One useful function that combines tuples and lists is zip:

zip [1,2,3,4] "ABCD" -- Gives [(1,'A'), (2,'B'), (3,'C'), (4,'D')]

This is useful if you want to process two lists in parallel with each other:

[x+y | (x,y) <- zip [1..4] [4..8]]

(In this case, there is another function, zipWith, that handles the problem
of pairing up elements of two lists and then applying some binary operation to
them. E.g. this is equivalent to the previous:

zipWith (+) [1..4] [4..8]

Note that if one of the lists is longer that the other, then zip will only work
to the end of the shorter lists. This means you can use an infinite list safely:

numberElems :: [a] -> [(a,Int)]
numberElems l = zip l [0..]

There are two builtin functions that operate on pairs:

• fst returns the first element of a pair
• snd returns the second element of a pair

Note that these only work on pairs: for higher-dimensional tuples you will
have to use pattern matching. E.g.,

let (x,y,z) = triple_thing in ...
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First-class Functions

Haskell is a functional language, which mostly means that functions exist as val-
ues: they can be stored in variables, passed into and returned out of functions,
and even built-up ಎom other functions. For example, we can do

plusone :: Int -> Int
plusone x = x+1

twice :: (Int -> Int) -> Int -> Int
twice f x = f(f(x)) -- Could also be written as f $ f x

We can now do something like

twice plusone 4

and the result will be 6 (i.e., plusone(plusone(4))).
There are a whole suite of builtin “higher order functions”, functions that,

like twice, take another function as an argument. Some examples:

map plusone [1,2,3,4] -- Gives [2,3,4,5]
filter odd [1..10] -- Gives [1,3,5,7,9]
foldr (+) 0 [1,2,3,4] -- Gives 1+2+3+4+0 = 10

foldr can be thought of as performing a search-and-replace on a list. E.g.,
in the example above, the input list is 1:2:3:4:[]. : gets replaced with +, while
[] gets replaced with 0.

The (+) syntax for turning an operator into a “normal” function is actual just
a ಎagment of the sectioning syntax that lets you leave off one argument to an
operator and get back a function

(+1) -- Same as the function plusone
(^2) -- The function that squares its argument
(<10) -- Returns True if its argument is less than 10
(0==) -- Returns True if its argument is exactly 0

(But note that (-1) is not the function that decrements its argument, but
just the literal numeric value -⒈ If you want the decrement function, you have
to write (+ (-1)).) The comparison operator sections are useful with filter:

filter (>=0) list_of_numbers -- Keep only the positive values

Currying is an extension of sections to all functions, even those you write.
It means that you can leave off the later arguments of a function, and you’ll get
back a new function. For example, suppose we have

f :: Int -> Float -> String -> Char

(where a,b,c,d are some types). If we call
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f 1 3.5 "hello"

we will get back a Char. But if we call

f 1 3.5

we will get back a function, a function that takes a String and “finishes up”,
returning an Int. Similarly, if we leave off ⒊5 we get a function that takes a
Float and a String, and so forth. We can get a feeling for why this works by
looking at the type of the function. In fact, the -> type associates to the right, so
in reality the type is

f :: Int -> (Float -> (String -> Char))

I.e., f takes an Int and returns a function. That function takes a Float and
returns a function. That function (finally!) takes a String and returns a Char.
In reality, all Haskell functions are unary; they take only one argument. But
later arguments will be automatically passed to functions that are returned, so
we can “fake” multiple argument functions. This ability is what lies behind the
otherwise inexplicable function call syntax:

f 1 2.2 "3"

makes more sense if you imagine that the call will actually proceed like

((f 1) 2.2) "3"

Lazy Evaluation

You may have heard that Haskell is a “lazy” language. As a way of introduction
to what this means, take another look at the syntax for functions:

f x y z = ... -- three arguments
g x y = ... -- two arguments
h x = ... -- one argument

Under Haskell’s syntax, what would a zero-argument function look like?

x = ...

In Haskell, a zero-argument function is indistinguishable ಎom a variable. In
particular, using a variable is semantically equivalent to “calling” a zero argument
function. This means that definitions like this

x = x + 1

are perfectly valid. If you ever “call” x, then your program will go into an
infinite loop, but the definition itself fine, albeit useless.

A more useful zero-argument function is something like this:
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x = 1:x

In order to figure out what this means exactly, let’s try to figure out the
type. We know 1 :: Int, and we also know that (:) :: a -> [a] -> [a].
Since the first argument to : is 1, a must be Int, which means that the type of
the second argument (i.e., x) must be [Int]. So we actually have

x :: [Int]
x = 1:x

Let’s evaluate out a couple of terms. Aಏer substituting the definition of x
into its body once we have

x = 1:(1:x)

Do it again and we get

x = 1:(1:(1:x))

In fact, x is the (lazy) infinite list of 1s. Each occurence of x within the ever-
expanding definition will be evaluated lazily; not when it is used, but only when
it is actually needed. This is how we can deal with infinite lists. We can use the
built-in take function to get a ಎagment of the list safely:

take 5 x -- will output [1,1,1,1,1]

Typeclasses

A Haskell typeclass is roughly akin to an interface in Java, or an abstract base
class in C++. It defines a set of operations, but does not speci௫ how they are
implemented. For example, any type that supports the Eq typeclass supports
both equality (==) and inequality (/=) but the actual implementation of these
operators is leಏ up to the type.

The most useful typeclasses to know about are

• Eq – supports (in)equality
• Ord – supports comparison operators
• Num – supports artithmetic operators (implies support for Eq and Ord as
well)

• Show – supports conversion to String (i.e., for printing)
• Enum – supports enumeration over a range (i.e., we can ask for all the values
of this type between a and b). The list syntax [a..b] requires that the type
of a and b support Enum.

Note that product and list types support Eq, Ord, and Show, provided that
the component types support them. I.e., because Int supports Ord, so does
[Int], so we can do:
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[1,2,3] < [3,4,5]

This kind of comparison is done lexicographically; the first two components
are compared, if they are equal then the second two, and so forth. (This is the
kind of comparison you would do when looking a word up in the dictionary.)

In the type of a function, any type classes are shown before a =>:

f :: Eq a => [a] -> Bool
f (x1:x2:_) = x1 == x2

We won’t ask you to write functions with typeclass constraints, however.
Knowledge of typeclasses is mostly useful for when you want to look up a func-
tion; most Haskell functions are polymorphic, so although you might expect to
see a function of type Int -> Int it will probably have a type more like Num a
=> a -> a so that it works on any numeric type.

Combinatorics

Combinatorics is a fancy computer science word for “counting stuff ”. For exam-
ple, we might want to know:

⒈ How many different ways can we roll a six-sided die?

⒉ How many different ways can we roll a pair of six-sided dice (assuming we
roll them in order and keep track of which was rolled “first” and which was
rolled “second”)?

⒊ If we draw four cards ಎom a standard 52-deck, how many ways are there of
drawing all the same suit (i.e., all twos, all queens, etc.)?

⒋ How many bĳections are there on a set of cardinality 10?

To take ⑴ as an example, if we write down all the possible rolls, the answer
is obvious. It’s obvious even without writing them down,

but bear with me.

There are six possible ways we can roll a six-sided die; that is, on a single roll,
the value shown will be one of the six listed above.

Although this result appears trivial, it illustrates a fundamental principle
which can always be used to solve any combinatorics problem: write down
all the possibilities and count them. There may be millions, or billions of
possibilities, but provided you write them down, not missing or duplicating any,
your answer will always be correct. Generally speaking, we will consider our Of course, in reality you wouldn’t want to

write them down, we’d prefer to write a
program to find all the possibilities and count
them.

combinatorics problems ಎom two angles:

• Numerically, as purely a question of developing equations for counting the
number of possibilities in various settings.
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• Algorithmically, as methods for generating all possibilities (which can then
be counted, or otherwise manipulated, easily).

For many problems, developing the mathematical structure will be the hard
part; generating the possible results algorithmically will be easy, and thus will
serve as a useful method for “checking our work”. In some cases, however,
generating the possibilities will require some finesse on our part, in which case
our mathematical predictions will serve to check our code.

Rules of Product and Sum

Consider example ⑵ above: although we could write down all the possibilities,
we’re already getting to the realm where that method would be tedious. Instead,
we’ll try to reason out a general mathematical method for solving these kinds of
problems.

• Suppose we roll a on the first die; since we have two dice and they don’t
affect each other at all, that means that the second die could still roll any of
its 6 possible values. So we know that we have at least 6 possible answers.

• Suppose we roll a on the first die; again, we could roll any of 6 values on
the second. So now we have another 6 possible answers, to be added to the
first 6. So now we have 12 possible answers that we know about.

• Continuing the pattern for , , etc., for every roll of the first die, there are
always 6 possible answers for the second. If we were to add them all up we
would get 6 + 6 + 6 + 6 + 6 + 6 = 6 ⋅ 6 = 36 possible results.

This illustrates the rule of product:

Definition 0.1 (Rule of Product) If we have two distinct, independent events,
the first of which can have 𝑚 possible results, and the second which can have
𝑛 possible results, then the number of possible results of these two events
happening in combination is

𝑚 ⋅ 𝑛

This generalizes to more than two events: if we have three distinct, indepen-
dent events happening in combination then we can simply multiply the number
of results for all the events. In general, if we have 𝑛 events where the number
of results for the 𝑖-the event is 𝑒𝑖 then the number of results if all the events
happen together is

𝑛

𝑖=

𝑒𝑖

Note that the conditions “distinct” and “independent” are important:

• If the events are not distinct (can “overlap” in some way) then we may end
up with fewer results than the product rule would predict. For example,
suppose we rolled a pair of dice but did not keep track of which was first and
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which was second. That is, would count as indistinguishable ಎom .
Now there are fewer than 36 possibilities, because, as we’ve just seen, some
pairs of possibilities count as only one results.

• If the events are not independent (the first can influence the number of
resuls in the second) then all bets are off: we may end up with more, or
fewer, results than the product rule would predict. For example, suppose we
drew two cards ಎom a standard 52-card deck, and we did not put the first
card back in the deck aಏer drawing it but placed it aside. The product rule
would tell us that we have 52 ⋅ 52 = 2074 possible results, but this is not
correct. Aಏer drawing the first card, there are only 51 cards leಏ in the deck,
so the answer is actually 52 ⋅ 51 = 2652 possible results.

(We’ll cover both these variants in the next section.)
A specific variant of the product rule covers the situation in which we have a

single event with 𝑒 results, repeated 𝑟 times. In this case, we have

𝑒 ⋅ 𝑒 ⋅ … 𝑒
𝑟

= 𝑒𝑟

Haskell note:
In Haskell, to generate all possibilities of 𝑒 and 𝑒 together, we simply use

the list comprehension notation to take their cross product:

d6 = [1..6]
d10 = [1..10]

ghci> length [(x,y) | x <- d6, y <- d10]
60

The generated list will contain all possible pairings of values ಎom a d6, with
values ಎom a d⒑

Example 0.1 The cafeteria has implemented a sadistic new meal plan. You may
choose:

• A hot meal with a cold drink and a dessert.

• A cold meal with either a hot or cold drink.

The possible hot meals are soup, “meat” (of unspecified origin), grilled cheese, and
pasta. The possible cold meals are three types of sandwiches, potato salad, or green
salad. The possible desserts are cake, a cooঘe, or jello. The possible hot drinks
are coffee and tea; the possible cold drinks are water, milk, four types of soda, and
lemonade. How many possible meals are there?

We will break down the problem by first considering all the possibilities for
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each component of the meal:

Hot meals = {soup,meat, grilled cheese, pasta}
Cold meals = {sandwhich, sandwhich, sandwich,

potato salad, green salad}
Desserts = {cake, cookie, jello}

Hot drinks = {coffee, tea}
Cold drinks = {water,milk, soda, soda,

soda, soda, lemonade}

So we have

|Hot meals| ⋅ |Cold drinks| ⋅ |Desserts| + |Cold meals| ⋅ (|Cold drinks| + |Hot drinks|)

= 4 ⋅ 7 ⋅ 3 + 5(2 + 7) = 84 + 45 = 129

possible meals. I’ll admit: I had fun writing this one.
Suppose we have a six-sided die, and a 12-sided die, and you are given the

choice of which to roll: one or the other, but not both. Now how many possible
results are there?

• If you choose to roll the d6, then there are 6 possible results.

• If you choose to roll the d12, then there are 12 possible results.

• So in total there are 6 + 12 = 18 possible results if you roll one or the other.

Definition 0.2 (Rule of Sum) If we have two distinct events the first of which
can have 𝑚 possible results, and the second which can have 𝑛 possible results,
then the number of possible results if one or the other of these events (but not
both) occurs is

𝑚 + 𝑛

Again, this generalizes to 𝑛 events:

𝑛

𝑖=
𝑒𝑖

Again, it’s important that the events be distinct: if they overlap in some
way, we will have fewer results than the sum rule would suggest. For example,
suppose we want to know how many ways we could roll a d6 such that the
result is either a or odd. Applying the sum rule, there is 1 way to roll a ,
and 3 ways to roll an odd number ( , , and ), so there should be 1 + 3 = 4
possible results, but this is not correct. If we write down all the possible rolls
that are or odd, we get
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Since occurs in both of the events, we have to be careful to avoid counting it
twice, so there are only 3 possible results.

Haskell note:
To implement the choice of 𝑒 and 𝑒, we have to consider the types of their

events. If they have the same type, then we can simply append the two event
lists together (using distinct to eliminate duplicates, if necessary or desired):

ghci> d6 ++ d10
[1,2,3,4,5,6,1,2,3,4,5,6,7,8,9,10]

However, this strategy is problematic, because it cannot handle events of differ-
ent types, and even for events of the same type, it discards the useful informa-
tion about which possibility came ಎom which event.

For events of different types we can invent a new data type to encapsulate
both types, and also to differentiate between the two sources:

data D6orD10 = D6 Int | D10 Int
(deriving Eq, Show)

ghci> (map D6 d6) ++ (map D10 d10)
[D6 1, D6 2, D6 3, D6 4, D6 5, D6 6,
D10 1, D10 2, D10 3, D10 4, D10 5, D10 6, D10 7, D10 8, D10 9, D10 10]

In fact, Haskell has a built-in type called Either, with its two constructors
Left and Right which can be used if we only have two types to deal with:

ghci> (map Left [1..3]) ++ (map Right "abc")
[Left 1, Left 2, Left 3, Right 'a', Right 'b', Right 'c']

We can combine the rules of sum and product to solve some problems:

Example 0.2 You have the choice of rolling a d6, or of rolling a d8 and a d10.

There are
6 + 8 ⋅ 10 = 86

possibilities.
Or in Haskell:

ghci> length $ (map Left d6) ++ (map Right [(x,y) | x <- d8, y <- d10])
86

Example 0.3 Roll a d10; if you roll a 10, roll again and add the result to your
total.

Here, there are 10 possibilities at the top level, but one of them expands into
another ⒑ Hence, we have

9 + 10 = 19
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possibilities. Incidentally, the complete set of possible results is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

Note that it is not possible to roll a 10!
To do this in Haskell, we’ll replace each of the values 1…10 with a list of all

the possibilities that it generates. For 1…9 this will just be the value itself, but
for 10 it will be [10 + x | x <- d10]. Then we’ll concat the resulting nested
list so we can count the total number of elements:

ghci> length $ concat [if x == 10 then map (x+) d10 else [x] | x <- d10]
19

Permutations

Suppose we draw five cards ಎom a standard deck of 52 cards. Furthermore, we
distinguish the first card ಎom the second, third, etc. I.e., rather than treating
the five cards as a “hand”, usable in any order, the order is fixed when we draw
them. We’ll also assume that we draw the cards ಎom the middle of the deck, so
that they are drawn randomly. How many different 5-card arrangements can we
draw?

If we examine the first card, we have 52 choices, since it can be any of the
52 cards in the deck. However, when we draw our second card, there are only
51 cards remaining in the deck; it is not possible for us to draw the same card
twice. If we carry this process on to the fiಏh card, we will find that there are

52 ⋅ 51 ⋅ 50 ⋅ 49 ⋅ 48 = 311875200

possible arrangements.
A problem like this, where we draw our choices ಎom a collection without

replacement, so that once an item is chosen it cannot be re-chosen, is called a
permutation. In particular, we would call this a permutation of size 5 for 52
objects. We can generalize this to permutations of size 𝑟 over 𝑛 objects as

𝑃(𝑛, 𝑟) = 𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑟 + 1)

We can simpli௫ this definition if we define the factorial:

𝑛! = 𝑛(𝑛 − 1)(𝑛 − 2)… (2)(1)

By definition, ! = .
Then our definition of 𝑃(𝑛, 𝑟) becomes just

𝑃(𝑛, 𝑟) = 𝑛!
(𝑛 − 𝑟)!

Permutations with repetition: Suppose we want to find the permutations of
the letters in the word BANANA. Since there are 6 letters, we might assume
that there are 6! = 720 permutations, but this is incorrect. Because some letters
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are repeated, there are fewer permutations. There are only 720 permutations
if we distinguish the three A’s, and the two N’s; in fact, if we are looking for
the permutations of BANANA. With repetition, we have to eliminate
the duplicate permutations in order to get an accurate count. For example,
BANANA and BANANA are two indistinguishable permutations. In fact,
for any arrangement of the letters in BANANA, there will be another version
in which N and N are swapped. Looking only at the N’s, there are twice as
many permutations as there should be.

A similar reasoning applies to the A’s: for any particular arrangement, there
are 3! arrangements of the “different” A’s that are indistinguishable. Thus, the
true number of permutations is actually

6!
2! 3! = 60

Example 0.4 How many arrangements of BANANA are there in which all three A’s
occur together, as AAA?

To figure this out, we simply treat AAA as a single, indivisible symbol and
permute it along with the other letters B, N, and N. So we have

4!
2! = 12

In general, if we have some collection of 𝑛 items broken into 𝑟 different types
(with items of the same type indistinguishable), with 𝑛 of the first type, 𝑛 of
the second, etc. (and 𝑛 + 𝑛 + … + 𝑛𝑟 = 𝑛) then there are

𝑛!
𝑛! 𝑛! … 𝑛𝑟!

arrangements possible.

Example 0.5 Six guests, 𝑔…𝑔 are seated around a circular table. Because the
table as circular, we consider two seating arrangements to be the same if they are
rotationally equivalent; that is, if we could rotate one arrangement to get the other.
How many seating arrangements are there?

Here we have the number of permutations of 6 items taken in size 6, but
there are 6 possible rotations, so we have

𝑃(6, 6)
6 = 6!

6 = 120

possible arrangements.

Generating permutations in Haskell

Although there is a function permutations, defined in Data.List, it requires
𝑛 = 𝑟; i.e., it generates the “full” 𝑛! permutations. We are interested in a)
allowing 𝑟 ≤ 𝑛 and b) implementing it ourselves, to see how its done.
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We will define a function perms l r. The output of perms will be the collec-
tion of all permutations of the list 𝑙 of size 𝑟, thus, it will always be the case that
length (perms l r) = 𝑃(length l, 𝑟),

Note that, for the moment, we will assume that the input is duplicate-ಎee.
Why this will be an issue will become apparent later.

We will define perm recursively on 𝑟. Our base case is 𝑟 = 0, which gives

perms _ 0 = [[]]

(Note that this satisfies our requirement above that 𝑃(𝑛, 0) = 1.)
In our recursive case, we are given perms l (r-1) and wish to construct ಎom

it perms l r. As an aid to working out exactly what needs to happen, here is
the result of perms [1..4] 1:

[[1],[2],[3],[4]]

and here is the result of perms [1..4] 2:

[[2,1],[3,1],[4,1],
[1,2],[3,2],[4,2],
[1,3],[2,3],[4,3],
[1,4],[2,4],[3,4]]

There are four rows, which suggests that perhaps each row corresponds to an
element ಎom perms [1..4] 1?

• For the first row, we take [1] and cons onto it each of 2,3 and ⒋ 1 is
skipped, because 1 is already “used up” in [1].

• For the second row, we take [2] and cons onto it each of 1,3,4, again, skip-
ping 2 because it is already “used up”.

• etc.

It would seem that the general rule is to take each element of the recursive
output 𝑝′, and cons onto it each element of 𝑙 − 𝑝′. That is, we remove all the
“used up” elements ಎom 𝑙.

Implementing all of this leaves us with:

import Data.List ((\\))

perms :: Eq a => [a] -> Int -> [[a]]
perms _ 0 = [[]]
perms l r = [i:p | p <- pm', i <- l \\ p]

where
pm' = perms l (r-1)

(We import the “list difference” operator \\ ಎom Data.List to find the differ-
ence 𝑙 − 𝑝′.)



௱ఀ௹௯௬௸௰௹௬௷ ௺௱ ௮௺௸ఀ௰ ௮௴௰௹௮௰ — ௷௰௮ఀ௰ ௹௺௰ 26

Combinations

Suppose we draw a hand of five cards, but instead of distinguishing first, second,
etc., cards, we regard the hand as unordered. With ordering we know that we
have

𝑃(52, 5) = 52!
(52 − 5)! = 311875200

permutations. But if order doesn’t matter then the hand

AH, KD, 9C, 3H, 2S

is equivalent to

KD, 2S, AH, 9C, 3H

In fact, if we consider a given hand of five cards and how we could reorder it,
we see that for the first card we have a choice of 5 cards, for the second 4, and
so forth. In fact, the total number of equivalent hands is simply the number of
permutations of ⒌ This brings us to the number of combinations of 𝑛 elements
of size 𝑟:

𝐶(𝑛, 𝑟) = 
𝑛
𝑘
 = 𝑃(𝑛, 𝑟)

𝑟! = 𝑛!
𝑟! (𝑛 − 𝑟)!

𝐶(𝑛, 𝑟) is sometimes read as “𝑛 choose 𝑘”. For the above example, we have

𝐶(52, 5) = 52!
5! (52 − 5)! = 1105

Example 0.6 On your midterm, you determine that you only have time to complete
15 problems, out of the 20 given on the test. How many different combinations of
problems are there?

The order in which you choose the problems does not matter, so combinations
are the tool of choice here. We have

𝐶(20, 15) = 20!
15! (20 − 15)! = 15504

combinations.

Example 0.7 Suppose we roll two 6-sided dice, and we ignore order (i.e., ( , ) is
considered identical to ( , )). How many possible rolls are there?

This problem is subtle; a first (and incorrect) guess might be

6
2! = 18

but this is wrong, because it removes too many “duplicates”. The rolls ( , ),
( , ), etc. have no duplicates. In fact, we need to first determine the number
of rolls in which the two values are different, divide that by 2!, and then add in
the 6 double-rolls. Thinking about the rolls where they are different, we see
that this is an 6-choose-2 situation (for the first roll we have 6 choices, but that
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eliminates a choice for the second roll, so then we only have 5). So the number
of rolls where the values are different, ignoring order is

𝐶(6, 2) = 6!
4! 2! = 15

plus the 6 double-rolls gives 15 + 6 = 21.
Another way to think about this problem is counting the number of rolls of

2d6 in which the first value is ≤ the second.

Combinations with repetition: We have assume that, in selecting combinations,
items are “used up”. That is, when we choose 𝐶(𝑛, 𝑟) aಏer choosing the first
item, there are 𝑛−1 items available. What if this is not the case, what if we have
𝑛 types of items, but an unlimited supply of each? We call this the problem of
selecting combinations with repetition.

Example 0.8 Suppose seven students go to a restaurant where they have the choice of
four items: cheeseburger, hot dog, taco, and fish sandwhich. If each student gets one
item, how many possible purchases are there?

In looking at purchases, we only care about how many of each item were or-
dered, not who got what. For each of the four items, we have a quantity ಎom 0
to 4, and the total of all the quantities must add up to ⒋ We will illustrate an
order as

CCHHHTF

(for an order of 2 cheeseburgers, 3 hotdogs, a taco, and a fish sandwich).
Thinking about this representation a bit, we see that as long as the differ-

ent “sections” always contain the same items (i.e., the first section is always
cheeseburgers, the second is always hotdogs, etc.) we don’t need to keep track
of which items are in each section, just how many. We can thus illustrate an
order equivalently using Xs and separators:

XX|XXX|X|X

Note that we have one fewer dividers than the number of items (4 − 1 = 3)
because three dividers split the order into four groups. We have to remember
that the first group is always cheeseburgers, etc.

In fact, we now have the problem is counting permuatations with duplicates:
we have 7 X’s, and 3 separators, for a total of 10 items. So we have

10!
3! 7!

is the total number of possible orders!
If we generalize this to the number of combinations of r of n distinct items,

with repetition, is
𝑛 + 𝑟 − 1
𝑟! (𝑛 − 1)! = 𝐶(𝑛 + 𝑟 − 1, 𝑟)
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Derangements

A permutation is a re-ordering of the elements in a sequence. What if we
place the restriction that no item is in its original position? We call such an
arrangement a derangement, and counting them is the focus of this section.

Suppose we have 𝑛 items, and we choose the first, item 1, to reposition. Item
1 cannot be placed back into slot 1, so we have a choice of 𝑛 − 1 positions:

𝐷(𝑛) = (𝑛 − 1) ⋅ …

Let us suppose that item 1 is placed into slot 𝑖 (with 𝑖 ≠ 1, obviously). We now
choose item 𝑖 to reposition next. Here, we have two choices:

• We can choose to place item 𝑖 in slot 1, effectively swapping items 1 and 𝑖.
Aಏer doing so, we have 𝑛 − 2 items to derange, and 𝑛 − 2 slots into which to
place them, so the problem is of the same kind as our original derangement
problem, just smaller. So we have

𝐷(𝑛) = (𝑛 − 1)(𝐷(𝑛 − 2) + …)

• Alternatively, we can declare that item 𝑖’s forbidden slot is slot 1, but still
allow some other item to be placed there. Now, including 𝑖 (which in this
case we have not placed yet) we have 𝑛 − 1 items, and 𝑛 − 1 slots (including
slot 1, which has not been filled yet, but can be filled by any item but 𝑖). So
again, we have the smaller problem of deranging 𝑛 − 1 items into 𝑛 − 1 slots,
leading us to the full definition:

𝐷(𝑛) = (𝑛 − 1)(𝐷(𝑛 − 2) + 𝐷(𝑛 − 1))

The sequence 𝐷(𝑛) is called the subfactorial, and is usually written ! 𝑛. I.e.,

! 𝑛 = (𝑛 − 1)(! (𝑛 − 2)+! (𝑛 − 1))

The Inclusion-Exclusion Principle

The Inclusion-Exclusion principle is useful for solving problems where we have
some large collection of objects, and we want to count all those that do not have
property 𝑝 or 𝑝 or ….

Example 0.9 Count the number of positive integers ≤ 100 that are not divisible by
2, 3, or 7.

Note that this is different ಎom ಎom counting those that are not divisible by 2,
3, and ⒎ If we wanted that, it would be the same as asking for all the numbers
that are not divisible by 2 ⋅ 3 ⋅ 7 = 35.

Counting the number of integers that are divisible by some 𝑛 is easy: just
divide and round down. Likewise, if we want to know the number that are not
divisible, we can simply subtract our result ಎom the total number:

not divisible by 3 = 100 − ⌊1003 ⌋ = 100 − 33 = 67
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However, we cannot simply do

100 − 𝑑 − 𝑑 − 𝑑

(where 𝑑𝑛 is the number of integers ≤ 100 that are divisible by 𝑛), because some
integers are divisible by 2 and 3, or by 2 and 7, by 3 and 7, and by 2,3, and ⒎ In
fact, if we simply subtract, we will be removing too many elements. Way too many, in fact:  − 𝑑 − 𝑑 − 𝑑 =

 −  −  −  = ! Surely there are more
than that!

Graphically the problem is this:

100

𝑑 𝑑

𝑑

𝑑

𝑑

𝑑 𝑑

If we remove one “copy” of the regions 𝑑, 𝑑 and 𝑑, we will be accidentally
removing two copies of 𝑑, 𝑑, and 𝑑, and three copies of 𝑑.

We can partly remedy this situation by adding back in a single copy of 𝑑,
𝑑, and 𝑑:

100 − (𝑑 + 𝑑 + 𝑑) + (𝑑 + 𝑑 + 𝑑) …

But again, we’ve gone too far: because each of 𝑑, 𝑑, and 𝑑 includes a copy of
𝑑 we have removed three copies of 𝑑, so now we have zero copies of 𝑑. We
can fix this and complete the calculation by subtracting a copy of 𝑑:

100 − (𝑑 + 𝑑 + 𝑑) + (𝑑 + 𝑑 + 𝑑) − 𝑑

If we calculate out all the needed values, we find that we have

100 − (50 + 33 + 14) + (16 + 7 + 4) − 2 = 28

If we have four conditions, then a similar procedure applies: subtract out
copies of each condition by itself, add in copies of the conditions in pairs,
subtract them in triples, and then add in all four in combination:

total − (𝑑𝑎 + 𝑑𝑏 + 𝑑𝑐 + 𝑑𝑑)
+ (𝑑𝑎𝑏 + 𝑑𝑏𝑐 + 𝑑𝑐𝑑 + 𝑑𝑎𝑐 + 𝑑𝑎𝑑 + 𝑑𝑏𝑑)

− (𝑑𝑎𝑏𝑐 + 𝑑𝑏𝑐𝑑 + 𝑑𝑎𝑏𝑑 + 𝑑𝑎𝑐𝑑)

+ 𝑑𝑎𝑏𝑐𝑑

(Notice, also, that the first group consists of all combinations of 4 items
taken 1 at a time, the second group 2 at a time, and so forth, with the signs
alternating −, +, −, +,….)
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Probability

With probability we are concerned with knowing how oen some particular
condition is fulfilled, out of some collection of events. We will re-use much
of the previous section’s work. In particular, we will still look at collections of
outcomes, however, now we will highlight some particular outcomes of interest.
If we have 𝑛 total outcomes, and there are 𝑚(≤ 𝑛) outcomes that are of interest
to us, then we say that the probability of these occuring is 𝑚/𝑛. This general This presupposes the equentist interpretation

of probability. The ಎequentist interpretation
assumes that probability reflects how oಏen an
event occurs, out of the total number of times
it possibly could occur. For closed systems
of outcomes like ours, the ಎequentist model
is a good one to use. It breaks down when
we start to ask questions like “what is the
probability that it will rain tomorrow?”, since
tomorrow only occurs once.

definition will underline everything we do in this section.
We will call a collection of “interesting” outcomes an event, and identi௫

events as 𝑒, 𝑒, …. An example of an event in the space of “rolling two d6s”
might be “rolling snake-eyes” or “rolling two odd values”. We will call the space
of all possible outcomes Ω. We define the probability function 𝑃 as

𝑃(𝑒) = |𝑒|
|Ω|

Note that 𝑃(Ω) = 1, and that 0 ≤ 𝑃(𝑒) ≤ 1 for any 𝑒 (the smallest 𝑒 is the empty
set of outcomes; the largest 𝑒 is 𝑒 = Ω).

Combining events

Suppose we have two events 𝑒 and 𝑒. If we know 𝑃(𝑒) and 𝑃(𝑒), can we
deduce 𝑃(𝑒 ∪ 𝑒) or 𝑃(𝑒 ∩ 𝑒)? Maybe:

• If 𝑒 and 𝑒 are disjoint (that is, if 𝑒 ∩ 𝑒 = ∅) then Yes. We have

𝑃(𝑒 ∪ 𝑒) = 𝑃(𝑒) + 𝑃(𝑒) 𝑃(𝑒 ∩ 𝑒) = 0

• If 𝑒 and 𝑒 overlap in some way then No, we need more information. If 𝑒
and 𝑒 are not disjoint, then 𝑃(𝑒 ∩ 𝑒) > 0. If we are given 𝑃(𝑒 ∩ 𝑒) then we
have

𝑃(𝑒 ∪ 𝑒) = 𝑃(𝑒) + 𝑃(𝑒) − 𝑃(𝑒 ∩ 𝑒)

(Note that this definition is consistent with the previous when 𝑒 and 𝑒 are
disjoint.) If this looks kind of like the Inclusion-

Exclusion principle, that’s because it is!

Haskell note:
In Haskell, an event will be a function ಎom outcomes to Bool. E.g., if we

are dealing with the space of 4d6, an event will have type [Int] -> Bool (or
possibly (Int,Int,Int,Int) -> Bool). We provide a function prob e s that
returns the probability of event 𝑒 occuring over the outcome space 𝑠.

We provide several higher-order operators that allow event functions to be
combined in logical ways:

• 𝑒 .&& 𝑒 – Returns True if both 𝑒 and 𝑒 do.

• 𝑒 .|| 𝑒 – Returns True if either of 𝑒 or 𝑒 do.
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• 𝑒 .>< 𝑒 – Returns True if only one of 𝑒 or 𝑒 do.

• not . 𝑒 – Returns True if 𝑒 is False and vice versa (this is just the normal
not operator composed with 𝑒, using Haskell’s function composition operator
.).

Thus, using these operators, we could ask for the probability that a d20 roll
will be odd and ≥ 6:

prob (odd .&& (>=6)) d20

or that a d6 will roll an even number, or a 4:

prob (even .|| (==4)) d6

Another (built-in) function which may be useful is uncurry:

uncurry :: (a -> b -> c) -> (a,b) -> c

uncurry takes a normal two-argument operator (such as (+)) and converts it
into a function that takes a pair as its input. This allows us to do something
like

prob (uncurry (<)) [(x,y) | x <- d6, y <- d10]

This will find the probability that a d10 roll will beat a d6 roll.

(Those who have seen probability elsewhere will note that we are making
a number of simplifications: we are assuming that each outcome occurs with
equal probability, and that any variations are manifested in the number of
duplicates of each outcome. E.g., an outcome that occurs twice is twice as likely
as one that occurs once. This also implies that outcomes with 0 probability are
not represented at all; i.e., all of our probability distributions are “positive”.)

Haskell note:
Because we represent Ω as a list of outcomes in Haskell, it is impossible for

any “primitive” event (i.e., an event that consists of a single actual outcome) to
have probability 0.0. In order for an outcome to have probability 0.0, it would
have to not occur in Ω at all, and in that case, it is effectively not an outcome at
all! In probabilistic terms, we would say that in Haskell, all our distributions are
restricted to their supports.

Some identities

Although the exact distribution of outcomes will determine their probabilities,
we can still state some general identities that will always apply. We have already
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seen two, above:

𝑃(Ω) = 1

𝑃(∅) = 0

That is, the probability of absolutely anything happening, we don’t care what, is
⒈0, and the probability that absolutely nothing at all will happen is 0.0.

Because “events” are really just set-like collections, we can apply a number
of results ಎom Boolean logic and set theory. E.g., if we denote the probability
that 𝑒 does not happen as 𝑃(¬𝑒) then we have

𝑃(¬𝑒) = 𝑃(Ω − 𝑒) = 1 − 𝑃(𝑒)

(Note that Ω−𝑒 is a set difference, while 1−𝑃(𝑒) is normal arithmetic subtraction.)
Similarly, we can say that the probability of two things not happening is the

same as the probability of neither of them happening:

𝑃(¬(𝑒 ∪ 𝑒)) = 𝑃(¬𝑒 ∩ ¬𝑒)

(Where ∪ can be read as “and” and ∩ can be read as “or”.) Similarly, the prob-
ability of both of two things not happening is the same as the probability of
either of them not happening:

𝑃(¬(𝑒 ∩ 𝑒)) = 𝑃(¬𝑒 ∪ ¬𝑒)

Finally, there is a kind of distributive law, akin to arithmetic’s 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐,
that allows us to distribute ∩ over ∪ and vice versa:

𝑃(𝑒 ∪ (𝑒 ∩ 𝑒)) = 𝑃((𝑒 ∪ 𝑒) ∩ (𝑒 ∪ 𝑒))

𝑃(𝑒 ∩ (𝑒 ∪ 𝑒)) = 𝑃((𝑒 ∩ 𝑒) ∪ (𝑒 ∩ 𝑒))

We mentioned above that 𝑃(𝑒 ∪ 𝑒) = 𝑃(𝑒) + 𝑃(𝑒) − 𝑃(𝑒 ∩ 𝑒). This implies
that

𝑃(𝑒 ∪ 𝑒) ≤ 𝑃(𝑒) + 𝑃(𝑒)

The Inclusion-Exclusion Principle for Probability

There is a variation of the inclusion-exclusion principle for probability. In fact,
we’ve already seen one version of it

𝑃(𝑒 ∪ 𝑒) = 𝑃(𝑒) + 𝑃(𝑒) − 𝑃(𝑒 ∩ 𝑒)

Again, the idea is the same: if we simply add 𝑃(𝑒) and 𝑃(𝑒) we will be double-
counting any events that occur in both, so we subtract out one copy of the
events that happen in both. If we have three events we get the familiar sign-
switching expansion:

𝑃(𝑒 ∪ 𝑒 ∪ 𝑒) = 𝑃(𝑒) + 𝑃(𝑒) + 𝑃(𝑒)

− (𝑃(𝑒 ∩ 𝑒) + 𝑃(𝑒 ∩ 𝑒) + 𝑃(𝑒 ∩ 𝑒))

+ 𝑃(𝑒 ∩ 𝑒 ∩ 𝑒)
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We can use the inclusion-exclusion principle here exactly as we did in com-
binatorics.

Example 0.10 Suppose we roll 2d10, and we want to know the probability that
either die rolled a 2.

Let’s use the notation 𝑑 = 2 to indicate that die 1 rolled a ⒉ By the inclusion-
exclusion principle, we have

𝑃(𝑑 = 2 ∪ 𝑑 = 2) = 𝑃(𝑑 = 2) + 𝑃(𝑑 = 2) − 𝑃(𝑑 = 2 ∩ 𝑑 = 2)

The probability that a d10 will roll any particular number is simply 0.⒈ The
probability that both will roll a particular number is 

⋅ = 0.01 so we have

𝑃(𝑑 = 2 ∪ 𝑑 = 2) =
1
10 +

1
10 −

1
100 = 0.19

This is slightly less than the 
 that a naive approach would predict. The reason

is because a roll of (2,2) does not count as rolling 2 twice, but only once. Note,
also that the probability is the same for rolling a 3 on either, or a 4, or any
other number.

Product distributions

A probability distribution over some Ω represents a single “experiment”. This
is true even if the experiment involves doing multiple things (e.g., rolling
multiple dice). What if we have multiple experiments? We can form the product
distribution over two outcome spaces Ω and Ω as

Ω ×Ω = {(𝑒, 𝑒) ∣ 𝑒 ∈ Ω, 𝑒 ∈ Ω}

Events in this space have the form of pairs of events ಎom the two underlying
experiments. We can then give the product probability function as

𝑃((𝑒, 𝑒)) = 𝑃 (𝑒)𝑃 (𝑒)

It should be obvious that we can form product distributions of more than
just 2 probability distributions. One interesting application is repeated experi-
ments: if we perform the same experiment twice we have

𝑃×((𝑒, 𝑒)) = 𝑃(𝑒)

Likewise, if we repeat an experiment 𝑛 times we have

𝑃((𝑒, 𝑒, … , 𝑒)) = 𝑃(𝑒)𝑛

the probability that event 𝑒 will occur 𝑛 times in succession.

Example 0.11 What is the probability that an unweighted coin flipped 10 times will
land heads every time?
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Suppose we designate “heads” as 1 and “tails” as zero. Then the probability
distribution is

𝑃(𝑐 = 1) = 1
2

and we have the product distribution

𝑃(𝑐 = 1) = 1
2 =

1
1024 ≈ 0.00098

In fact, this is the probability that any particular configuration of 10 flips will
come up. E.g., if we asked for the probability that the first 5 flips would land
heads, and the last 5 tails, it would be the same. We could just as well have considered the

probability distribution of 10d2 “rolls”. In
that case, each outcome would be a 10-tuple
of coin flips. Oಏen we will have the choice
of whether to construct a single distribution
with complex structure, or to combine
a number of simpler distributions into a
product distribution. We’ll usually make
the choice based on what’s easiest. The nice
thing about a product distribution is that
we are guaranteed that the events in the
product cannot “interfere” with each other,
because they came ಎom completely different
“experiments”.

Example 0.12 Suppose we have a weighted coin that lands heads some 0 < 𝑞 < 1
portion of the time, and tails 1 − 𝑞 the rest of the time. Now what is the probability
that 10 flips will all be heads? Will all be tails?

Here we have
𝑃(𝑐 = 1) = 𝑞

and
𝑃(𝑐 = 0) = (1 − 𝑞)

Note that if we were looking for the probability of some specific configuration
of heads/tails, we would have something like

𝑞 ⋅ (1 − 𝑞) ⋅ 𝑞… (1 − 𝑞) ⋅ 𝑞

But since multiplication is both associative and commutative we can rearrange
the product into

𝑞𝑚 ⋅ (1 − 𝑞)𝑛

where 𝑚 is the number of heads and 𝑛 is the number of tails and 𝑚 + 𝑛 = 10.

Conditional Probability

Oಏen we will want to look at the probability of some event 𝑒 occuring assuming
that some other event 𝑒′ is already known to have occured. For example, the
probability of rolling a 1 on a d6 is 

 = 0.167 but the probability of rolling a 1
assuming we have rolled an odd number is 

 = 0.333. We write the conditional
probability of 𝑒 given 𝑒′ as 𝑃(𝑒 ∣ 𝑒′) and define it to be

𝑃(𝑒 ∣ 𝑒′) = 𝑃(𝑒 ∩ 𝑒′)
𝑃(𝑒′)

This also gives us an alternate definition of 𝑃(𝑒 ∩ 𝑒):

𝑃(𝑒 ∩ 𝑒) = 𝑃(𝑒 ∣ 𝑒)𝑃(𝑒)

Haskell note:
In Haskell we have the function when:



௱ఀ௹௯௬௸௰௹௬௷ ௺௱ ௮௺௸ఀ௰ ௮௴௰௹௮௰ — ௷௰௮ఀ௰ ௹௺௰ 35

when :: (a -> Bool) -> (a -> Bool) -> [a] -> Float

where when e f l gives the conditional probability that event 𝑓 occurs in 𝑙,
given that 𝑒 is known to have occured. Internally, it works by simply filtering 𝑙
to only those outcomes where 𝑒 is True, and then finding the probability of 𝑓
within that restricted context.

Exercise: prove that this implementation gives an equivalent result to the
above mathematical definition.

The Chain Rule: We can extend the above definition of 𝑃(𝑒 ∩ 𝑒) to three
events as follows:

𝑃(𝑒 ∩ 𝑒 ∩ 𝑒) = 𝑃(𝑒 ∣ 𝑒 ∩ 𝑒)𝑃(𝑒 ∣ 𝑒)𝑃(𝑒)

or
𝑃(𝑒 ∩ 𝑒 ∩ 𝑒) = 𝑃(𝑒 ∣ 𝑒 ∩ 𝑒)𝑃(𝑒 ∣ 𝑒)𝑃(𝑒)

Bayes Law: Looking again at the definition of conditional probability:

𝑃(𝑒 ∣ 𝑒′) = 𝑃(𝑒 ∩ 𝑒′)
𝑃(𝑒′)

With a bit of algebraic massage we can get

𝑃(𝑒 ∣ 𝑒′) = 𝑃(𝑒 ∩ 𝑒′)
𝑃(𝑒) = 𝑃(𝑒 ∣ 𝑒′)𝑃(𝑒′)

𝑃(𝑒)

I.e., given the conditional probability going in one direction, we can find the
reverse probability, provided we know the unconditional probabilities of the
underlying events.

Independence: we say that two events are independent if

𝑃(𝑒 ∩ 𝑒) = 𝑃(𝑒)𝑃(𝑒)

but another way of stating this is that

𝑃(𝑒 ∣ 𝑒) = 𝑃(𝑒) and 𝑃(𝑒 ∣ 𝑒) = 𝑃(𝑒)

I.e., 𝑒 and 𝑒 are independent iff knowing that one has happened does not
change the probability of the other.

Expected value: numeric probabilities

When our outcomes are numeric (as opposed to cards or colors or what not) we
can ask additional questions about the outcome space. The expected value is the
numeric value that we would expect to see over the entire space of outcomes.
For example, for a fair d6, the expected value is ⒊5, because if we rolled a d6 an



௱ఀ௹௯௬௸௰௹௬௷ ௺௱ ௮௺௸ఀ௰ ௮௴௰௹௮௰ — ௷௰௮ఀ௰ ௹௺௰ 36

infinite number of times and averaged the values, we would get ⒊⒌ We write
the expected value as

𝐸[{1, 2, 3, 4, 5, 6}] = 3.5

or more generally
𝐸[𝑆] = 1

|𝑆|Σ𝑖∈𝑆𝑖

Transitive Dice (optional)

Consider a simple gambling game: two players both roll two identical, fair dice,
highest roll wins. Under these settings, neither player would have an advantage
over the other, because both dice have the same expected outcome. As a further
variation, suppose we have three dice:

𝐷 = {1, 2, 3, 4, 5, 6}

𝐷 = {2, 3, 4, 5, 6, 7}

𝐷 = {3, 4, 5, 6, 7, 8}

The first player chooses a die, and then the second player chooses, and then
they compete. For these dice, there is no reason for the first player to choose
anything but 𝐷; this die will reliably win against the other two. Is there a way
to construct a set of dice in which the second player will have the advantage,
rather than the first?

First, consider the probability that one die will win against another. For
example, for 𝐷 vs. 𝐷, what is the probability 𝑃(𝐷 < 𝐷)?

Number Theory

Here we’re interesting in the properties of numbers, particularly whole numbers
(integers), particularly-particularly whole numbers greater than or equal to zero.
We call these natural numbers. If we want to talk about all the natural numbers,
we denote this collection ℕ.

Preliminaries: Inference rules

We will cover inference rules in section but we will give a brief introduction
here as they will be useful for our purposes.

An inference rule is a shorthand for writing an if-then statement. For exam-
ple, this rule states that “if it is raining, then I am carrying an umbrella”:

It is raining
I’m carrying an umbrella

Note that it does not follow ಎom this that if I am carrying an umbrella, then
it is raining; there may be other reasons, not given, why I would be carrying an
umbrella.
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A rule with nothing above the line is called an axiom and it is true every-
where:

It is hot
A rule may have multiple premises above the line, all of which must hold in

order for the conclusion (below the line) to hold:
It is raining I’m outside

I’ll have an umbrella
Given a collection of inference rules, we can ask what sorts of things can be

proven ಎom them. For example, consider the following rules:

It is hot It is cloudy It is January It is Saturday

It is Saturday
I am outside

It is January
It is raining

It is January I am outside
I am cold

I am cold It is raining
I am wearing a coat

If we wish to prove under these rules that I am wearing a coat we begin with
that statement as our conclusion:

?
I am wearing a coat

We then expand the premises of the rule that matches the conclusion:

?
I am cold

?
It is raining

I am wearing a coat

and continue our way upwards until every “branch” of this tree ends in an
axiom:

It is January
It is Saturday
I am outside

I am cold

It is January
It is raining

I am wearing a coat

This sort of tree-structure is called a derivation, and serves as a semi-formal
proof that the conclusion follows ಎom the given axioms and rules.

The inductive definition of ℕ

We are interested in finding the simplest definition for ℕ that still allows us to
investigate its properties in a useful way. We begin by asking what the simplest
element of ℕ is; zero is an obvious choice. Whatever else may be a natural
number, 0 obviously is. We state this via an axiomatic inference rule:

Nat-Zero
0 ∈ ℕ
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We now face the problem of constructing the other numbers. How can we
“build” the number 1, starting with 0? One obvious method is to “add one to
it”. 1 + 0 = 1. Similarly, if we want to know how to construct 2, we can add 1
to 0, and then add 1 to the result of that: 1 + (1 + 0) = 2. We call the operation
of “adding one to” something the successor and write it as 𝑆(𝑛). Combining this
with the rule for 0 gives us a complete inductive definition of ℕ:

Nat-Zero
0 ∈ ℕ

Nat-Succ
𝑛 ∈ ℕ
𝑆(𝑛) ∈ ℕ

Using this definition we can build up any natural number we want by start-
ing with 0 and applying the Nat-Succ rule as many times as needed. Likewise,
if we are given some possibly-natural number, say, 𝑆(𝑆(𝑆(0))) (= 3) and we want
to know if it is, in fact, a proper natural number, we can construct a derivation
to convince ourselves:

Nat-Succ(𝑛 = 𝑆(𝑆()))

Nat-Succ(𝑛 = 𝑆())

Nat-Succ(𝑛 = )
Nat-Zero

0 ∈ ℕ
𝑆(0) ∈ ℕ

𝑆(𝑆(0)) ∈ ℕ
𝑆(𝑆(𝑆(0))) ∈ ℕ

What happens if we try to prove that, e.g., 𝑆(potato) ∈ ℕ?

Nat-Succ

?
?

potato ∈ ℕ
𝑆(potato) ∈ ℕ

We get stuck. Note that our failure to construct a derivation does not constitute
a proof that 𝑆(potato) ∉ ℕ, it merely means “we don’t know”. We distinguish
betwee false and unknown, because there are problems which are unsolved, for
which we cannot say, and maybe never will be able to say, “this is true” or “this
is false”.

Operations on Natural Numbers

Given the inductive definition of ℕ, can we define the usual comparison and
arithmetic operations on it? We can, using recursion. While induction tells us
how to build something up, recursion tells us how to use that to take some-
thing apart. Consider our definition above: if we want to define an operation on
𝑥 ∈ ℕ, according to the definition, the only situations we need to worry abour
are

𝑥 = 0 (“Base case”, by rule Nat-Zero)
𝑥 = 𝑆(𝑛) (“Inductive case”, by rule Nat-Succ)

In the inductive case, we have one crucial piece of additional information:
we know that 𝑛 ∈ ℕ. So that means that whatever we are doing, we can
continue to do it on 𝑛, until we reach the case where 𝑛 = 0. Because 0 stands by
itself and doesn’t have anything hidden “inside” it, we can define whatever our
operation is supposed to do directly.



௱ఀ௹௯௬௸௰௹௬௷ ௺௱ ௮௺௸ఀ௰ ௮௴௰௹௮௰ — ௷௰௮ఀ௰ ௹௺௰ 39

Comparisons: An example may make this more concrete: we wish to give a
recursive definition for the less-than relation: 𝑎 < 𝑏 with 𝑎, 𝑏 ∈ ℕ. The first
question we have to ask is, what can we say about < that is true in the context
of 0? That is, what fact can we state, immediately, about < and 0, without
knowing anything else? Our first instinct is probably to say something like “0
is less than every other number”. By “every other” number, we mean, natural
numbers starting at 1 (that is, 𝑆(0)). We can express the idea of “every natural
number, starting at 1” by writing 𝑆(𝑛). We can fill in 𝑛 with anything we like,
but no matter what we use, the result will always be non-zero. Combining
these two insights, we get the base case for <:

<-Zero
0 < 𝑆(𝑛)

If we wanted to be completely correct, we
would write

<-Zero 𝑛 ∈ ℕ
 < 𝑆(𝑛)

but we will leave this implicit for now.

Now, the fact that we have a 0 on the leಏ-hand side should clue us in that
we will need a 𝑆(𝑎) in that position in the inductive case (we have to cover both
possible ways of constructing a ℕ):

<-Succ
𝑎 < ?

𝑆(𝑎) < 𝑆(𝑏)

(details to follow) Rewrite this to explain why 𝑆(𝑏) is required on the RHS.
Here, we need to find something that we can say about 𝑆(𝑎) < ?, but we get,

for ಎee, the ability to apply whatever we are saying to 𝑎 < ?. The purpose of
this case is to “break down” the leಏ hand side by stripping off one successor. If
we do this enough times, we will eventually reach the base case and then we will
be done.

In order to figure out how to complete the definition, we will re-write it in
the more familiar mathematical form, with variables on the right-hand side:

if 𝑎 < 𝑏 then 1 + 𝑎 < 𝑏′

What relation needs to hold between 𝑏 and 𝑏′ in order for this statement to be
true? What if we let 𝑏′ = 𝑏 + 1? Then we have

if 𝑎 < 𝑏 then (1 + 𝑎) < (1 + 𝑏)

and this statement is true. Translating this back into successors gives us the
complete definition:

<-Zero
0 < 𝑆(𝑛)

<-Succ
𝑎 < 𝑏

𝑆(𝑎) < 𝑆(𝑏)

Note that we are in fact breaking down both 𝑎 and 𝑏; this will sometimes be
necessary, but it is always required that we make the operand smaller which has
a 0 in that position in the base case. Remember that our goal is to eventually
reach the base case and thus be able to stop!

Note that, as before, just because we cannot construct a derivation (e.g., that
𝑆(𝑆(0)) < 0) this does not imply that we know 𝑆(𝑆(0)) ≥ 0, the negation of <. If
we want ≥, we will have to construct its own set of rules, which we will do next.
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Our base case is fairly simple:

≥-Zero
𝑛 ≥ 0

(I.e., “anything is ≥ zero”.)
In our inductive case, we will need a 𝑆(𝑏) where we have a 0, so a template of

our rule will be
≥-Succ

𝑎 ≥ 𝑏
𝑎′ ≥ 𝑆(𝑏)

As above, if we let 𝑎′ = 1 + 𝑎 we have a true statement and a complete definition:

≥-Zero
𝑛 ≥ 0

≥-Succ
𝑎 ≥ 𝑏

𝑆(𝑎) ≥ 𝑆(𝑏)

Construction of the ≤, >, etc. comparisons is leಏ as an exercise for the
reader; they mostly follow the patterns of the definitions given above.

Arithmetic operators: We now wish to derive recursive definitions for the usual
arithmetic operators: +, ×, −, and /. We will also be interested in constructing
definitions for two operations related to division: divisibility, written 𝑎 ∣ 𝑏 for “b
is divisible by a” and remainder, written 𝑎 rem 𝑏 for the remainder of 𝑎 divided by
𝑏.

For addition, we have as our base case the fact that 0 + 𝑏 = 0:

Add-Zero
0 + 𝑏 = 𝑏

For our inductive case, we will have something along the lines of

Add-Succ
𝑎 + 𝑏 = 𝑐

𝑆(𝑎) + 𝑏′ = 𝑐′

where it is up to us to define 𝑏′ and 𝑐′ to make the statement true. With a little
thought, we see that letting 𝑐′ = 𝑆(𝑐) and 𝑏′ = 𝑏 will work:

Add-Zero
0 + 𝑏 = 𝑏

Add-Succ
𝑎 + 𝑏 = 𝑐

𝑆(𝑎) + 𝑏′ = 𝑆(𝑐)

For subtraction, we have two possibilities:

• We can define normal subtraction, 𝑎−𝑏, but state that it is only defined when
𝑎 ≥ 𝑏.

• We can define truncated subtraction, usually called “monus”, which is defined
as

𝑎 −̇ 𝑏 =

⎧⎪⎪⎨
⎪⎪⎩
0 if 𝑎 < 𝑏
𝑎 − 𝑏 otherwise

𝑎 −̇ 𝑏 is defined for all 𝑎, 𝑏 and thus will sometimes prove more useful.
Traditional subtraction is defined ಎom the base case 𝑎 − 0 = 𝑎:

Sub-Zero
𝑎 − 0 = 𝑎

Sub-Succ
𝑎 − 𝑏 = 𝑐

𝑆(𝑎) − 𝑆(𝑏) = 𝑐
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Defining monus requires us to define an auxillary operation, the predecessor,
which we write as 𝑃(𝑛):

Pred-Zero
𝑃(0) = 0

Pred-Succ
𝑃(𝑆(𝑛)) = 𝑛

Intuitively, the predecessor just subtracts 1, except at 0, where it just stops.
With the predecessor, we can now proceed to define 𝑎 −̇ 𝑏:

Mon-Zero
𝑎 −̇ 0 = 𝑎

Mon-Succ
𝑎 −̇ 𝑏 = 𝑐 𝑐′ = 𝑃(𝑐)

𝑆(𝑎) −̇ 𝑏 = 𝑐′

Aside: inductive proofs As an informal introduction to how we can prove things
using inductive definitions, consider the problem of proving that, for any 𝑎,
𝑎 − 𝑎 = 0. We don’t know anything about 𝑎 except that 𝑎 ∈ ℕ. But this tells us It is also the case that 𝑎 −̇ 𝑎 =  for any 𝑎, and

indeed, the proof is essentially identical.that we have two possibilities we need to examine:

𝑎 = 
?

0 − 0 = 0
𝑎 = 𝑆(𝑎′)

?
𝑆(𝑎′) − 𝑆(𝑎′) = 0

(We call these two cases the “base case” and the “inductive case”.)
The first case, 𝑎 = 0, follows directly ಎom the Sub-Zero rule, so we are done

there. In the second case, we can use the Sub-Succ rule to see where that gets
us:

Base case (𝑎 = )
0 − 0 = 0

Inductive case (𝑎 = 𝑆(𝑎′))

?
𝑎′ − 𝑎′ = 0

𝑆(𝑎′) − 𝑆(𝑎′) = 0

This doesn’t appear to have gotten us anywhere, as we have reduced the task
of proving 𝑎 − 𝑎 = 0 to proving the same thing, 𝑎′ − 𝑎′ = 0! It is as if we
said, “to prove 𝑃, you must prove 𝑃”. However, there is a key difference: 𝑎′ is
smaller than 𝑎. Notice how, in all of our recursive definitions, we assume that
we can (e.g.) compute 𝑎 + 𝑏 correctly, and then ಎom that derive 𝑆(𝑎) + 𝑏. Put
another way, so long as we can “shrink” the problem a bit in some way, we will
eventually reach the zero case which can give us the answer right away. We will
do the same thing here: we will assume that 𝑎′ − 𝑎′ = 0 so long as 𝑎′ is smaller
than what we started with (we call this assumption the “inductive hypothesis”
and abbreviate it IH). And, since 𝑎 = 𝑆(𝑎′), 𝑎′ is smaller than 𝑎 and we can apply
the IH, completing our proof:

Base case (𝑎 = )
0 − 0 = 0

Inductive Case (𝑎 = 𝑆(𝑎′))
IH

𝑎′ − 𝑎′ = 0
𝑆(𝑎′) − 𝑆(𝑎′) = 0

If this doesn’t make sense, try applying it to a particular 𝑎 ∈ ℕ, say, 𝑎 =
𝑆(𝑆(0)):

Inductive case: 𝑎′ = 𝑆()

Inductive case: 𝑎′ = 
Base case

0 − 0 = 0
𝑆(0) − 𝑆(0) = 0

𝑆(𝑆(0)) − 𝑆(𝑆(0)) = 0
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By reducing the proof that (𝑎 + 1) − (𝑎 + 1) = 0 to 𝑎 − 𝑎 = 0 we ensure that we
will eventually reach 0 − 0 = 0, which is true axiomatically.

If this form of “proof ” looks like the other kinds of recursive definitions
we’ve been building, that is not a coincidence. Just as the rules Plus-Zero
and Plus-Succ combine to build a recursive algorithm for taking two natural
numbers and computing their sum, so this proof builds a recursive algorithm
for taking a natural number 𝑛 and computing a concrete proof that 𝑛 − 𝑛 = 0.
An inductive proof is in fact just another recursive function, just one that
outputs proofs instead of values!

We can define multiplication as just repeated addition:

Mult-Zero
0 × 𝑏 = 0

Mult-Succ
𝑎 × 𝑏 = 𝑐

𝑆(𝑎) × 𝑏 = 𝑏 + 𝑐

(I.e., (1 + 𝑎)𝑏 = 𝑏 + 𝑎𝑏.)

Division

Division will turn out to be one of the more interesting areas of number theory,
but for now we will build up the recursive definitions of three operations:

• Truncated (integer) division: ⌊𝑎/𝑏⌋; aka, “division rounded down”.

• Remainder: 𝑎 rem 𝑏

• Divisibility: 𝑏 ∣ 𝑎 iff 𝑎 rem 𝑏 == 0

Truncated division: We define division by repeated subtraction. That is, given
𝑎/𝑏, our goal is to find out how many “copies” of 𝑏 will “fit” into 𝑎. We do this
by subtracting out 𝑏’s until we can go no further (i.e., until the result is < 𝑏).
Our definition looks like this:

Div-Base
𝑎 < 𝑏
𝑎/𝑏 = 0

Div-Rec
𝑎 ≥ 𝑏 𝑎 − 𝑏 = 𝑎′ 𝑎′/𝑏 = 𝑐

𝑎/𝑏 = 𝑆(𝑐)

We reduce the case of computing 𝑎/𝑏 to computing 1 + ((𝑎 − 𝑏)/𝑏). Exercise: what operation is defined if we use
the monus −̇ instead of subtraction?It is interesting to notice that this method does not break down into the

usual Zero and Successor cases. Instead, our base case is defined by the relative
magnitudes of the numerator and denominator, and our recursive case reduces
the size of 𝑎 not by 1 but by 𝑏. In fact, as we shall see later, this is the key
difference between natural number induction and strong induction. Natural
number induction shrinks by 1, strong induction can shrink by any value (> 0
of course). This also illustrates why division by 0 is undefined: if 𝑏 = 0 then we
are not subtracting anything and 𝑎 never gets smaller.

Remainder: Division, as we’ve defined above, throws away some information
(hence the name, “truncated”). In particular, when we reach the base case, we
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may have 𝑎 ≠ 0 in which case 𝑏 does not divide 𝑎 evenly, but rather with some
remainder. The remainder is in fact just this last 𝑎, whatever is leಏ over aಏer
we have subtracted out all the 𝑏’s we can. If we have both the truncated quotient
and the remainder, then we can reconstruct the original 𝑎. The definition of the
remainder is very similar to that of division: we work by repeated subtraction,
except that we return the final 𝑎:

Rem-Base
𝑎 < 𝑏

𝑎 rem 𝑏 = 𝑎
Rem-Rec

𝑎 ≥ 𝑏 𝑎 − 𝑏 = 𝑎′ 𝑎′ rem 𝑏 = 𝑐
𝑎 rem 𝑏 = 𝑐

In fact, the two operations are so similar that they are sometimes combined
into a single operation quotRem(𝑎, 𝑏) = (𝑞, 𝑟):

QR-Base
𝑎 < 𝑏

quotRem(𝑎, 𝑏) = (0, 𝑎)
QR-Rec

𝑎 ≥ 𝑏 𝑎 − 𝑏 = 𝑎′ quotRem(𝑎′, 𝑏) = (𝑞, 𝑟)
quotRem(𝑎, 𝑏) = (𝑆(𝑞), 𝑟)

(This is built-in to Haskell as the quotRem function.)
Note that, given these definitions, for any 𝑎 ∈ ℕ, 𝑏 ∈ ℕ, 𝑏 ≠ 0 if we have

quotRem(𝑎, 𝑏) = (𝑞, 𝑟) then it is the case that 𝑟 + 𝑞𝑏 = 𝑎. Remember that 𝑞 is the
number of copies of 𝑏 we were able to pull out of 𝑎, and 𝑟 is whatever was leಏ
over. So if we start ಎom 𝑟, and then add 𝑞 copies of 𝑏 back in, we’ll get back to
where we started.

Divisibility: Finally, we define divisibility 𝑏 ∣ 𝑎 by repeated subtraction as well,
following the above definitions:

∣-Base
𝑏 ∣ 0

∣-Rec
𝑎 ≥ 𝑏 𝑏 ∣ (𝑎 − 𝑏)

𝑏 ∣ 𝑎

Division with negative numbers: If we want to extend division to ℤ, the set of
integers (positive and negative whole numbers) we run into some interesting
questions. We wish to define integer division 𝑎/𝑏 = 𝑞 with remainder 𝑟 such that

𝑎 = 𝑏𝑞 + 𝑟 with |𝑟| < |𝑏|

|𝑟| < |𝑏| expresses our condition that the remainder be “smaller”, in magnitude,
than the divisor. This still leaves us with several possible choices about the sign
of 𝑞 and 𝑟.

The definition that most of us learned in elementary school is that if 𝑎 and 𝑏
have the same sign then 𝑞 is positive, whereas if their signs are different, then 𝑞
is negative. If we examine this in the context of an example, we can determine
what this forces the sign of the remainder to be:

4 quot −3 𝑞 = −1, 4 = (−3)(−1) + 1, 𝑟 = +1

−4 quot 3 𝑞 = −1, −4 = (3)(−1) − 1, 𝑟 = −1

−4 quot −3 𝑞 = +1, −4 = (−3)(1) − 1, 𝑟 = −1

In this scheme, the sign of the remainder is the same as the sign of 𝑎, the
dividend.
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An alternate scheme is to require the sign of the remainder to match that of
the divisor:

4 div −3 4 = −3𝑞 + 𝑟, 𝑞 = −2, 𝑟 = −2

−4 div 3 − 4 = 3𝑞 + 𝑟, 𝑞 = −2, 𝑟 = +2

−4 div −3 − 4 = −3𝑞 + 𝑟, 𝑞 = +1, 𝑟 = −1

Finally, we have the “Euclidean modulo” scheme, in which the remainder is
always positive:

4/ − 3 4 = −3𝑞 + 𝑟, 𝑞 = −1, 𝑟 = +1

−4/3 − 4 = 3𝑞 + 𝑟, 𝑞 = −2, 𝑟 = +2

−4/ − 3 − 4 = −3𝑞 + 𝑟, 𝑞 = +2, 𝑟 = +2

Haskell note:
In Haskell, the first definition is given by the built-in functions quot and

rem. The second is given by div and mod. If you need both the quotient and
remainder, then there are functions quotRem and divMod which return them as a
pair.

The Euclidean modulo is unfortunately not built-in to any programming
language, despite its many desirable qualities.

Greatest Common Denominators and the Euclidean Algorithm

As a prerequisite to several topics we’ll look into later, we are interested in
finding the greatest common denominator (GCD) of two (or more) integers 𝑎 and
𝑏. There are several definitions we can use for the GCD:

• If we consider our inputs as products of prime factors then we have something
like this:

𝑎 = 2𝑚 × 3𝑚 × 5𝑚 × 7𝑚 ×⋯

𝑏 = 2𝑛 × 3𝑛 × 5𝑛 × 7𝑛 ×⋯

Under this definition, the GCD is the product of the minimum powers of all The exponents 𝑛𝑖 are called the multiplicites
of the various factors. Instead of writing
 =  ×  ×  we write  =  ×  × ⋯.

the prime factors; i.e., all the factors that both values have in common:

gcd(𝑎, 𝑏) = 2min(𝑚 ,𝑛) × 3min(𝑚 ,𝑛) × 5min(𝑚 ,𝑛) × 7min(𝑚 ,𝑛)⋯

• An alternate definition is based on the idea of a common denominator: 𝑐 is a
common denominator if

𝑐 ∣ 𝑎 and 𝑐 ∣ 𝑏

For 𝑐 to be the “greatest” common denominator, it must not just be larger
than any other common denominator, it must also include them. I.e., if
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𝑑 is a common denominator of 𝑎 and 𝑏 then if 𝑐 is the greatest common
denominator

𝑑 ∣ 𝑐

Both definitions will prove useful to us: the first is more intuitive, but the
second will be more algebraically (and algorithmically) useful.

Given these definitions, we want to derive the actual greatest common de-
nominator 𝑐 = gcd(𝑎, 𝑏). One method would be to factor both 𝑎 and 𝑏, and
then form the product of all the common factors. However, factoring integers
is computationally difficult; if we were to use this method on large numbers it
would quickly become intractable. Instead, we will derive a recursive method for
reducing gcd(𝑎, 𝑏) to the GCD of some “smaller” inputs.

Looking at the second definition, we have

𝑐 ∣ 𝑎 and 𝑐 ∣ 𝑏

This implies that
𝑎 = 𝑐𝑥 and 𝑏 = 𝑐𝑥

If we subtract the second equation ಎom the first we find that

𝑎 − 𝑏 = 𝑐(𝑥 − 𝑥)

Letting 𝑥′ = 𝑥 − 𝑥 we can put this into the form corresponding to divisibility,
and thus derive:

𝑐 ∣ 𝑎 − 𝑏

Thus, if we assume that 𝑎 is the larger of the two inputs, we can reduce the
problem of finding gcd(𝑎, 𝑏) to that of finding gcd(𝑏, 𝑎 − 𝑏). Our base case will be
gcd(𝑎, 0) = 𝑎. This leads us to the recursive definition: We use gcd(𝑎, ) = 𝑎 as our base case because

𝑎 ∣  for any 𝑎.
gcd(𝑎, 0) = 𝑎
gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎 − 𝑏)

where we take it as implicit that 𝑎 is always the larger of the two arguments.
(It’s easy enough to swap the arguments if this is not the case.)
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Working through an example, suppose we want to find gcd(250, 111):

gcd(250, 111) =
gcd(139, 111) = (250 − 111 = 139)
gcd(111, 28) = (139 − 111 = 28)
gcd(83, 28) = (111 − 28 = 83)
gcd(55, 28) = (83 − 28 = 55)
gcd(28, 27) = (55 − 28 = 27)
gcd(27, 1) = (28 − 27 = 1)
gcd(26, 1) =

⋮

gcd(2, 1) =
gcd(1, 1) =
gcd(1, 0) = 1

We find that the greatest common denominator of 250 and 111 is 1 (i.e., 250
and 111 do not share any factors). If two numbers do not share any factors we
call them “relatively prime”.

Looking at the sequence of GCDs performed above, we seem to be doing a
lot of repeated subtraction, which should clue us in to the possibility of simpli-
௫ing our procedure by using division. In fact, if we look at the inputs above we
find that

250 rem 111 = 28

111 rem 28 = 27

28 rem 27 = 1

27 rem 1 = 0

We can “shortcut” through the subtraction by replacing it with a remainder.
This also saves us the trouble of having to keep track of which argument is
larger, because 𝑎 rem 𝑏 < 𝑏. Thus, we have the new-and-improved recursive
definition

gcd(𝑎, 0) = 𝑎
gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎 rem 𝑏)

Properties of the GCD

We’ve already seen one property of the GCD in our base case:

gcd(𝑎, 0) = 𝑎

Given that the GCD is defined as being the factors 𝑎 and 𝑏 have in common,
we would expect that

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎)
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although we will leave the problem of proving this to later. (This implies that,
in all of the following properties, we can swap the arguments to get a related
property.)

Note that usually, we will say that

gcd(0, 0) is undefined.

Because 1 ∣ 1, we find that

gcd(𝑎, 1) = 1

If 𝑝 is some prime, then for any 𝑎 < 𝑝 we have

gcd(𝑎, 𝑝) = 1

This property will become useful later.
The GCD is associative in that

gcd(𝑎, gcd(𝑏, 𝑐)) = gcd(gcd(𝑎, 𝑏), 𝑐)

This implies that we can ask for the GCD of a set of values:

gcd({𝑛, 𝑛, … , 𝑛𝑖}) = gcd(𝑛, gcd({𝑛, … , 𝑛𝑖}))

The least common multiple: A closely-related concept is the least common
multiple of 𝑎 and 𝑏, the smallest value that both 𝑎 and 𝑏 divide into evenly. Its
definitions are very similar to those for the GCD:

• If

𝑎 = 2𝑚 × 3𝑚 × 5𝑚 × 7𝑚 ×⋯

𝑏 = 2𝑛 × 3𝑛 × 5𝑛 × 7𝑛 ×⋯

then

lcm(𝑎, 𝑏) = 2max(𝑚 ,𝑛) × 3max(𝑚 ,𝑛) × 5max(𝑚 ,𝑛) × 7max(𝑚 ,𝑛)⋯

• If 𝑐 = lcm(𝑎, 𝑏) then
𝑎 ∣ 𝑐 and 𝑏 ∣ 𝑐

and for any other common multiple 𝑑

𝑐 ∣ 𝑑

While the GCD represents the idea of all the factors that the two values
have in both, the LCM represents all the factors that are in either. In set-
theoretic terms, the GCD is the intersection while the LCM is the union.
In fact, this view lets us define the LCM in terms of the GCD, by using a vari-
ant of the inclusion-exclusion principle. The inclusion-exclusion principle tells
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us that if we want everything that is in either set, without duplicates, we take
everything either set, and then remove one copy of everything that is in both.
To get “everything in either” we simply multiple, since this will add together
the corresponding exponents. To remove “everything in both” we divide by the
GCD, since the GCD is what is common, and division amounts to subtracting
ಎom the exponents. This gives us the definition

lcm(𝑎, 𝑏) = 𝑎𝑏
gcd(𝑎, 𝑏)

This also implies that
lcm(𝑎, 𝑏) × gcd(𝑎, 𝑏) = 𝑎𝑏

Together with the LCM, we have a kind of “distributive property”:

lcm(𝑎, gcd(𝑏, 𝑐)) = gcd(lcm(𝑎, 𝑏), lcm(𝑎, 𝑏))
gcd(𝑎, lcm(𝑏, 𝑐)) = lcm(gcd(𝑎, 𝑏), gcd(𝑎, 𝑐))

Modular arithmetic

Remainders have an interesting property in that we can move operations before
or aಏer them without changing the result. For example:

(12 + 37) rem 5 = 49 rem 5 = 4

But we could just as easily do

(12 + 37) rem 5 = ((12 rem 5) + (37 rem 5)) rem 5 = (2 + 2) rem 5 = 4

We have the choice of doing the addition “outside”, in the world of actual
integers, or “inside”, in the world of all numbers remainder 5; the result will
be the same in either case. This will become more useful when our operations
are on very large values: it will oಏen be (much!) more computationally efficient
to keep them reduced remainder some 𝑛, rather than wait until the end of the
procedure to do the reduction.

We refer to doing things “remainder 𝑛” as “modulo 𝑛”. If 𝑎 rem 𝑛 = 𝑏 then
we write

𝑎 ≡ 𝑏 mod 𝑛

and read this as “𝑎 is congruent to 𝑏 mod 𝑛”. Some quick properties follow ಎom
the definition of the remainder:

𝑎 ≡ 1 mod 1
0 ≡ 0 mod 𝑛
1 ≡ 1 mod 𝑛
𝑘𝑛 ≡ 0 mod 𝑛 (for any integer 𝑘)
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As mentioned above, we can move operations inside the modulo ಎeely:

if 𝑎 ≡ 𝑎′ mod 𝑛 and 𝑏 ≡ 𝑏′ mod 𝑛 then 𝑎 + 𝑏 ≡ 𝑎′ + 𝑏′ mod 𝑛
if 𝑎 ≡ 𝑎′ mod 𝑛 and 𝑏 ≡ 𝑏′ mod 𝑛 then 𝑎𝑏 ≡ 𝑎′𝑏′ mod 𝑛

We will oಏen take advantage of this to reduce some portion of an equation. For
example, if we have 𝑎 + 𝑏𝑛 ≡ 𝑐 mod 𝑛 we can eliminate the 𝑏𝑛 term because
𝑏𝑛 ≡ 0 mod 𝑛, leaving us with 𝑎 ≡ 𝑐 mod 𝑛.

Another, perhaps more intuitive way to think about modular arithmetic is
“arithmetic around the face of a clock”:

𝑛 = 5

0

1

23

4

In order to compute (for example) 6 + 8 mod 5 we first go around the
“clock”, 6 steps clockwise (clockwise, because 6 is positive). From that point
(which will be at “1”) we continue another 8 steps, again clockwise, leaving us at
“4”. Because multiplication is just repeated addition, the same procedure can be
used: to find 3 ∗ 8 mod 5 we simply go 8 steps forward, 3 times, leaving us at
“4”.

Modular Multiplicative Inverses: A multiplicative inverse of a value 𝑎 is a value
𝑎− such that

𝑎𝑎− = 1

In the world of ಎactions, every value except 0 has a multiplicative inverse,
because we can always do

𝑎1𝑎 = 1

But for integers this is not the case. For example, there is no integer 𝑥 such
that

2𝑥 = 1

However, when we compute modulo 𝑛, we sometimes have modular multi-
plicative inverses:

1(1) ≡ 1 mod 5
2(3) ≡ 1 mod 5
3(2) ≡ 1 mod 5
4(4) ≡ 1 mod 5
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Here, as we expect, every value except 0 has a multiplicative inverse. But this is
not always the case:

1(1) ≡ 1 mod 6
2(?) ≡ 1 mod 6
3(?) ≡ 1 mod 6
4(?) ≡ 1 mod 6
5(5) ≡ 1 mod 6

Try as we might, there is no value 𝑥 such that 2𝑥 ≡ 1 mod 6. Observe:

2(0) ≡ 0 mod 6
2(1) ≡ 2 mod 6
2(2) ≡ 4 mod 6
2(3) ≡ 0 mod 6
2(4) ≡ 2 mod 6

⋮

Our remainders repeat in an endless cycle of 0, 2, 4, …. This happens because 2
and 6 share a factor, namely ⒉ Because of this, we can never escape the cycle of
multiples of that factor. In fact, for any modulo 𝑛, 𝑎 will have a multiplicative
inverse mod 𝑛 if and only if 𝑎 and 𝑛 are relatively prime (i.e., iff gcd(𝑎, 𝑛) = 1).
If we want to ensure that we have all modular inverses, we will have to choose
our 𝑛’s such that every 𝑎 is relatively prime to them. The only way to do this is
to only choose actual prime numbers for our 𝑛’s. That way, for any 𝑎 ≠ 0, we
will have gcd(𝑎, 𝑛) = 1 ensuring that 𝑎 has a modular inverse.

Finding modular inverses: To find the modular inverse of some 𝑎 (with
gcd(𝑎, 𝑛) = 1) we make use of Bezout’s identity which states

There exist 𝑥, 𝑦 such that gcd(𝑎, 𝑏) = 𝑎𝑥 + 𝑏𝑦

To see why this is useful, remember that we have

1 = 𝑎𝑥 + 𝑛𝑦

because 𝑎 and 𝑛 are relatively prime. If we take this modulo 𝑛 we have

𝑎𝑥 + 𝑛𝑦 ≡ 1 mod 𝑛

but 𝑛𝑦 ≡ 0 mod 𝑛 so really we have

𝑎𝑥 ≡ 1 mod 𝑛

which makes 𝑥 the modular inverse of 𝑎. (Note that 𝑥 and 𝑦 need not be
unique, but all 𝑥 mod 𝑛 will reduce to the same value.)
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To find 𝑥 and 𝑦 to satis௫ the identity, we will make a relatively simple
change to the Euclidean algorithm we used to compute the GCD, giving us
the Extended Euclidean Algorithm. We want

egcd(𝑎, 𝑏) = (𝑐, 𝑥, 𝑦) with 𝑐 = 𝑎𝑥 + 𝑏𝑦

Our base case will be similar to that for the ordinary GCD:

egcd(𝑎, 0) = (𝑎, 𝑥, 𝑦) with 𝑎 = 𝑎𝑥 + 0𝑦

Obviously 𝑥 = 1 and the value of 𝑦 does not matter; we choose 𝑦 = 0 for
simplicity, giving us

egcd(𝑎, 0) = (𝑎, 1, 0)

To construct our recursive case, we assume that we have already executed the
recursive call and gotten its results:

egcd(𝑏, 𝑎 mod 𝑏) = (𝑐, 𝑥, 𝑦) with 𝑐 = 𝑏𝑥 + (𝑎 mod 𝑏)𝑦

From this, we want to reconstruct the solution to

egcd(𝑎, 𝑏) = (𝑐′, 𝑥′, 𝑦′) with 𝑐′ = 𝑎𝑥′ + 𝑏𝑦′

First, we notice that, as in the original GCD, 𝑐 does not change when we
move ಎom the recursive call to the outer call. Thus, we have 𝑐′ = 𝑐. Substitut-
ing this in and setting the two equations equal to each other gives us

𝑏𝑥 + (𝑎 mod 𝑏)𝑦 = 𝑎𝑥′ + 𝑏𝑦′

Here, we will assume that we have computed

𝑞 = 𝑎 div 𝑏
𝑟 = 𝑎 mod 𝑏

with 𝑎 = 𝑞𝑏 + 𝑟

giving us
𝑏𝑥 + 𝑟𝑦 = 𝑎𝑥′ + 𝑏𝑦′

Here, we have one equation with two unknowns (𝑥′ and 𝑦′). In order to
make some progress, we will let 𝑥′ = 𝑦 becausLOOK OVER THERE

This gives us
𝑏𝑥 + 𝑟𝑦 = 𝑎𝑦 + 𝑏𝑦′

which we can solve for 𝑦′ giving

𝑦′ = 𝑏𝑥
𝑏 + 𝑦(𝑟 − 𝑎)

𝑏

If we rearrange our division identity, we find that 𝑟 − 𝑎 = −𝑞𝑏 and thus

𝑦′ = 𝑥 − 𝑦𝑞
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Thus, our full recursive definition is

egcd(𝑎, 0) = (𝑎, 1, 0) (Base case)
egcd(𝑎, 𝑏) = let (𝑐, 𝑥, 𝑦) = egcd(𝑏, 𝑎 mod 𝑏)

in (𝑐, 𝑦, 𝑥 − 𝑦(𝑎 div 𝑏)) (Recursive case)

And then, if egcd(𝑎, 𝑛) = (1, 𝑖, −) we have 𝑎𝑖 ≡ 1 mod 𝑛.

The Chinese Remainder Theorem

Suppose we have a value 𝑠, and we compute 𝑠 modulo several different values:

𝑠 mod 𝑚 = 𝑎
𝑠 mod 𝑚 = 𝑎

⋮

𝑠 mod 𝑚𝑛 = 𝑎𝑛

If we are only given all the 𝑚𝑖 and 𝑎𝑖, can we reconstruct the original 𝑠? In
fact, under certain circumstances, the answer is Yes. We will examine how this
can be done, and demonstrate an application to the problem of secret sharing.

To start, we will look at the situation in which we have only two modulos:
𝑚 and 𝑚. Furthermore, we will assume both these are prime. Since they are
both prime, Bezout’s identity implies that

gcd(𝑚, 𝑚) = 1 = 𝑥𝑚 + 𝑦𝑚

for some 𝑥 and 𝑦. In fact, 𝑥 = 𝑚−
 mod 𝑚 and likewise 𝑦 = 𝑚−

 mod 𝑚, ಎom
the definition of the modular inverse we found above.

If we multiply both sides by 𝑠 we have

𝑠 = 𝑠𝑥𝑚 + 𝑠𝑦𝑚

If we take this modulo 𝑚 and 𝑚 we have

𝑠 ≡ 𝑠𝑥𝑚⏟


+𝑠 𝑦𝑚


mod 𝑚

𝑠 ≡ 𝑠 𝑥𝑚


+𝑠𝑦𝑚⏟


mod 𝑚

(Note that 𝑚 ≡ 0 mod 𝑚 and likewise for 𝑚.)
But note that 𝑠 ≡ 𝑎 mod 𝑚, and likewise 𝑠 ≡ 𝑎 mod 𝑚 so we can

substitute 𝑎 for 𝑠 when taken modulo 𝑚, and likewise 𝑎 for 𝑠 when modulo
𝑚:

𝑠 ≡ 𝑎𝑥𝑚⏟


+𝑎𝑦𝑚 mod 𝑚

𝑠 ≡ 𝑎𝑥𝑚 + 𝑎𝑦𝑚⏟


mod 𝑚
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We can now add these two equations together, dropping the zero terms and the
modulos, giving

𝑠 = 𝑎𝑥𝑚 + 𝑎𝑦𝑚

I.e., to reconstruct 𝑠, we find 𝑥 = 𝑚−
 mod 𝑚 and 𝑦 = 𝑚−

 mod 𝑚. We then
multiply each 𝑎𝑖 by the other 𝑚𝑗, 𝑗 ≠ 𝑖 and its corresponding inverse, and sum the
results. In fact, the sum may not be the final solution, but merely congruent to
it, so we actually have to do

𝑠 = 𝑎𝑥𝑚 + 𝑎𝑦𝑚 mod (𝑚𝑚)

Generalizing to 𝑛 modulos: Generalizing the CRT to an arbitrary number of
modulos is not difficult. We glossed over the reason why each term in the final
sum has 𝑎 but 𝑚 in it by saying that it was the “other” modulo. In fact, the
general form of for 𝑛 = 2 is

𝑀 = 𝑚𝑚

𝑑 =
𝑀
𝑚

𝑑 =
𝑀
𝑚

𝑑− = minv𝑚 (𝑑) 𝑑− = minv𝑚 (𝑑)

𝑠 = 𝑎𝑑𝑑− + 𝑎𝑑𝑑−  mod 𝑀

(Where minv𝑚(𝑥) gives the modular inverse of 𝑥, modulo 𝑚.) I.e., we form the
product of all the modulos, and then dividing by each modulo in turn gives us
the 𝑑𝑖 that forms the core of each term in the final sum.

Expanded out to 𝑛 terms, we have the solution to the series of congruences

𝑠 mod 𝑚 = 𝑎
𝑠 mod 𝑚 = 𝑎

⋮

𝑠 mod 𝑚𝑛 = 𝑎𝑛

given by

𝑀 = 𝑚𝑚⋯𝑚𝑛 (Product of all modulos)

𝑑𝑖 =
𝑀
𝑚𝑖

for all 𝑖 (Quotient of each modulo)

𝑑−𝑖 = minv𝑚𝑖 (𝑑𝑖) for all 𝑖 (Inverse of each quotient)
𝑠 =  

≤𝑖≤𝑛
𝑎𝑖𝑑𝑖𝑑−𝑖  mod 𝑀

Note that the 𝑚𝑖 do not actually all need to be prime; this was done above
purely for convenience. By Bezout’s identity, it is sufficient for them to all be
pairwise coprime (i.e., for any pair 𝑚𝑖, 𝑚𝑗 with 𝑖 ≠ 𝑗, 𝑚𝑖 and 𝑚𝑗 are relatively
prime). Likewise, a further restriction is implied by the final mod 𝑀 step: the
original 𝑠 must be < 𝑀. If it is not, the solution we get will be 𝑠′ = 𝑠 mod 𝑀
and we will not be able to recover the original 𝑠.
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An application to secret sharing: A secret sharing problem is one in which we
have a secret 𝑠 which we wish to share with some 𝑛 individuals, in such a way
that 𝑠 can only be recovered if at least 𝑘 ≤ 𝑛 of them cooperate. In the simplest
case, 𝑘 = 𝑛 and all the individuals must cooperate to recover the secret.

It’s fairly easy to see how the CRT can be used for the simple case of se-
cret sharing: 𝑠 is the secret, and a pair (𝑎𝑖, 𝑚𝑖) is generated and given to each
individual. If all individual come together, they can use the CRT to recover 𝑠.
However, there is an important condition on the 𝑚𝑖 used: not only must the
product 𝑀 = 𝑚𝑚… be greater than 𝑠, it must be the case that the product of
any subset of the 𝑚𝑖 is less than 𝑠. That is for any 0 ≤ 𝑗 ≤ 𝑛

 1
𝑚𝑗


≤𝑖≤𝑛

𝑚𝑖 < 𝑠 < 𝑀

Remember that if 𝑠 ≥ 𝑀 then we cannot recover the original 𝑠, we can only
recover 𝑠 mod 𝑀. If we want to hide the secret when 𝑛 − 1 or fewer individuals
come together, we must ensure that the product of any 𝑛 − 1 or fewer modulos
is < 𝑠.

This generalizes to 𝑘 ≤ 𝑛: we must form our original set of modulos such
that at least 𝑘 of them are required. If we say that [𝑀]𝑘 is all the subsets of the
modulos of size 𝑘 then

for all 𝐾 ∈ [𝑀]𝑘 ∶ 𝐾 < 𝑠 < 𝑀

We could further generalize this to isolating some individual⒮ 𝑚𝑗 whose
presence was required, by making it so that no product of size 𝑘 without 𝑚𝑗 was
big enough.

Although the above description establishes the conditions for secret sharing,
it does not tell us how to find a set of 𝑛 modulos, such that they are all pairwise
coprime, and the product of any 𝑘 or more is greater than 𝑠, but the product of
any 𝑘 − 1 or fewer is not. A brute-force method will work, but is slow. General
schemes usually exploit specialized sequences of modulos which are ordered in
such a way that subsequences have the required threshold conditions.

An interesting further application of the CRT to secret sharing is the fact
that modular arithmetic allows us to operate on the secret without knowing it.
For example, suppose we have a secret value divided among three individuals,
who have not come together (i.e., the secret is not being recovered). We want
to change the secret, to replace it with 𝑠′ = 𝑠 + 1 for example. We simply
instruct each individual to modi௫ their own portion as follows:

𝑎′𝑖 = 𝑎𝑖 + 1 mod 𝑚𝑖

(The modulos of course stay the same.) Just as we can move operations into
and out of a modular ring ಎeely, we can move an operation into all the modular
rings of our secret-sharers. This can be used to apply almost any mathematical
operation⒮ to the secret without revealing it, so long as the result still falls
within the threshold range (∏[𝑀]𝑘 < 𝑠′ < 𝑀). Division is problematic, but doable under

certain circumstances.
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This technique also has applications to parallel computing: if 𝑠 is not a
known value, but rather an expression with a known magnitude, we can choose
our 𝑚𝑖 so that their product is big enough to contain 𝑠. We then distribute
the computation defining 𝑠 along with each 𝑚𝑖 to 𝑛 different computers. Each
computer computes 𝑎𝑖 = 𝑠 mod 𝑚𝑖 independently, and in parallel, and the final
step is to reconstitute the 𝑎𝑖 into the actual value of 𝑠.

Conversion between number bases

Although we usually don’t think about it, the written form of a number as, for
example “10,365” is not the value of the number itself, but rather a representa-
tion of it. Here we are concerned with converting between representations and
values.

Given a number represented in some base 𝑏, we assume that every digit of the
number is in the range 0… 𝑏 − 1. (Thus, in base 10, we have digits 0 through ⒐)
If this is the case, and the number is written with digits

𝑑𝑛…𝑑𝑑𝑑

then the value of the number is given by

𝑣 = 𝑏𝑑 + 𝑏𝑑 + 𝑏𝑑 +⋯+ 𝑏𝑛𝑑𝑛

For example, the base-7 number 1036 has value

𝑣 = 6(7) + 3(7) + 0(7) + 1(7) = 370

Since our calculators and computers normally work in base-10, this serves as a
general procedure for converting a value to base-10, albeit implicitly.

If we want to convert a value to some other base, we rely on two observa-
tions:

• 𝑣 mod 𝑏 gives us the lowest digit of the representation. This corresponds to
the “ones” digit in any base. Note that every higher terms in the sum above
is multiplied by some non-zero power of 𝑏. Thus, when taken mod 𝑏, all
terms other than the lowest one are congruent to 0.

• 𝑣 div 𝑏 has the effect of “shiಏing” all the digits down. E.g., 1023 div 10 = 102.
Thus, we can recurse on 𝑣 div 𝑏 to get the new lowest digit, which will be the
second lowest digit in the final representation, and so forth.

We will terminate our procedure when 𝑣 ÷ 𝑏 = 0 as at that point all higher
digits will be 0 (because 0 div 𝑏 = 0 and 0 mod 3 = 0).

Thus, our procedure is

• Base case: 𝑣 = 0 then the representation is just “0”.

• Recursive case:

𝑑 = 𝑣 mod 𝑏
𝑣′ = 𝑣 div 𝑏
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The low digit is given by 𝑑, and then we find the higher digits recursively on
𝑣′.

Boolean Algebra

In Boolean algebra we are primarily concerned with operations over a domain of
only two values, true which we denote 1 and false, 0. Over these values, we have

We will see later that not all Boolean algebras
have just true and false. It is possible to
construct an (uninteresting) Boolean algebra
with only one value, or with more than two.

the following operations:

Notation Description

𝑎 NOT; if 𝑎 = 1 then 𝑎 = 0 and vice versa
𝑎𝑏 AND; if 𝑎 and 𝑏 are 1 then the result is 1, otherwise it is 0
𝑎 + 𝑏 OR; if either of 𝑎 or 𝑏 is 1 then the result is 1, otherwise it is 0
𝑎 ⊕ 𝑏 Exclusive-OR (XOR); if one of 𝑎 or 𝑏 is 1 then the result is 1, otherwise it is 0

(Other operations can be defined by combining these; we will examine
several later.)

We can define these operations by giving truth tables for them, speci௫ing, for
every possible combination of inputs, what the result will be:

𝑎 𝑎

0 1
1 0

𝑎 𝑏 𝑎𝑏

0 0 0
0 1 0
1 0 0
1 1 1

𝑎 𝑏 𝑎 + 𝑏

0 0 0
0 1 1
1 0 1
1 1 1

𝑎 𝑏 𝑎 ⊕ 𝑏

0 0 0
0 1 1
1 0 1
1 1 0

These tables define their respective operations, but we can construct a truth
table for any boolean expression we like, by simply breaking it down and apply-
ing the above tables. For example, suppose we want to construct the table for
𝑎𝑏. If we break down the expression into its components, we find that we need
to know 𝑎, 𝑏, 𝑏, 𝑎𝑏 and finally 𝑎𝑏:

𝑎 𝑏 𝑏 𝑎𝑏 𝑎𝑏

0 0 1 0 1
0 1 0 0 1
1 0 1 1 0
1 1 0 0 1

It is also possible to construct a truth table for a Boolean function of more
than two variables. Because each variable can take on two values, a function of
𝑛 variables will have 2𝑛 rows in its definition.

From looking at the above tables, we can derive several important identities
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about them:

1 ⋅ 𝑎 = 𝑎 ⋅ 1 = 𝑎 (Identity)
0 + 𝑎 = 𝑎 + 0 = 𝑎 (Identity)
𝑎 + 𝑏 = 𝑏 + 𝑎 (Commutativity)
𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 (Commutativity)
𝑎 = 𝑎 (Double-negation)
𝑎 + 𝑎 = 𝑎 (Idempotence)
𝑎𝑎 = 𝑎 (Idempotence)
(𝑎 + 𝑏) = 𝑎𝑏 (DeMorgan’s laws)
𝑎𝑏 = 𝑎 + 𝑏 (DeMorgan’s laws)
𝑎 + 𝑎 = 1 (Inverse)
𝑎𝑎 = 0 (Inverse)
𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (Associativity)
𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 (Associativity)
𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 (Distributivity)
𝑎 + 𝑏𝑐 = (𝑎 + 𝑏)(𝑎 + 𝑐) (Distributivity)

We can veri௫ these properties by building the truth tables for them. We
will only build tables for two of the properties: associativity (𝑎(𝑏𝑐) = (𝑎𝑏)𝑐) and
DeMorgan’s law (𝑎𝑏 = 𝑎 + 𝑏).

𝑎 𝑏 𝑐 𝑎(𝑏𝑐) (𝑎𝑏)𝑐

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

𝑎 𝑏 𝑎𝑏 𝑎 + 𝑏

0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0
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Normal forms for Boolean expressions

It can be difficult, by looking at a pair of Boolean expressions, to determine
whether they “do the same thing” (i.e., produce the same output for all identical
inputs). One way to check this would be to generate truth tables for both.
Another way is to transform both into a normal form, a particular expression
structure such that any two equivalent expressions 𝑒 = 𝑒 will also be identical
𝑒 ≡ 𝑒. The two main normal forms for Boolean expressions are Sఀ௸-௺௱-
P௺௯ఀ௮ (also known as “disjunctive normal form”: DNF) and P௺௯ఀ௮-
௺௱-Sఀ௸ (also known as “coǌunctive normal form”: CNF).

Sum-of-Products: An expression in SoP normal form has the general structure

𝑥𝑥…𝑥𝑛 + 𝑥𝑥…𝑥𝑛 + …

where each product includes all variables, and any of the individual variables
may be negated, but otherwise no negations are allowed on anything “larger”
than a variable. Obviously, since 𝑎+𝑎 = 𝑎, there is no point in including multiple
copies of a particular product, so all of the products should be distinct, in terms
of which variables are negated. Products of possibly-negated variables are

sometimes called minterms, for reasons that
only computer architecture nerds understand
or care about.

Any Boolean expression can be put into SoP form by using the distributive
identies and DeMorgan’s laws to move + outward, and negation inward. For
example:

𝑎𝑏(𝑏 + 𝑐)

𝑎𝑏𝑏 + 𝑎𝑏𝑐 (By distributivity)
(𝑎 + 𝑏)𝑏 + (𝑎 + 𝑏)𝑐 (By DeMorgan’s laws)
𝑎𝑏 + 𝑏𝑏 + 𝑎𝑐 + 𝑏𝑐 (By distributivity)
𝑎𝑏 + 0 + 𝑎𝑐 + 𝑏𝑐 (By absorbtion)
𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 (Identity of +)

At this point, we need to ensure that every product includes all the variables
in our system. In order to add the missing variables, we note that 𝑏𝑐 = (𝑎 +
𝑎)𝑏𝑐 = 𝑎𝑏𝑐 + 𝑎𝑏𝑐. In other words, if a variable is missing, then we expand that
product into a sum in which it is present in both its negated and unnegated
forms. Doing this on the above, and eliminating the resulting duplicates, gives

𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐

Although this process works, there is another way: we can generate out the
truth table for an expression and then simply read off the SoP form ಎom it:
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𝑎 𝑏 𝑐 𝑎𝑏(𝑏 + 𝑐)

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

For each row whose result is a 1, we form a product based on the values
of the inputs for that row: if an input is 0 then the variable is negated in the
product, otherwise it is leಏ un-negated. For example, the first row above would
correspond to:

𝑎𝑏𝑐

Note that when 𝑎, 𝑏, and 𝑐 take on the values 0,0,0, the result of this product is
1, as it should be according to the table.

To form the complete SoP, we simply take the sum of all rows (rows whose
result is 0 are ignored). Thus, working ಎom the above table, we have:

𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐 + 𝑎𝑏𝑐

This is the same result we got above, if we ignore the order of variables within a
product, and the order of products within a sum (since both sums and products
are commutative and associative).

A formal definition of Boolean algebra

We have defined Boolean algebras somewhat informally, above. Here we will
give a more formal definition, and show that all the properties you’d expect can
be derived ಎom the formal definition.

Definition 0.3 Boolean Algebra A Boolean algebra is a set 𝐵 containing two
distinguished elements 1 and 0, with a pair of operators ⋅ and + that fulfil the
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following conditions:

𝑎 + 𝑏 ∈ 𝑆 (∀𝑎, 𝑏 ∈ 𝑆)
𝑎 ⋅ 𝑏 ∈ 𝑆 (∀𝑎, 𝑏 ∈ 𝑆)
1 ⋅ 𝑎 = 𝑎 ⋅ 1 = 𝑎 (Identity of ⋅)
0 + 𝑎 = 𝑎 + 0 = 𝑎 (Identity of +)
𝑎 + 𝑏 = 𝑏 + 𝑎 (Commutativity of +)
𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 (Commutativity of ⋅)
𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (Associativity of +)
𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐 (Associativity of ⋅)
𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 (Distributivity of ⋅ over +)
(𝑎 + 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐 (Distributivity of ⋅ over +)
𝑎 + (𝑏 ⋅ 𝑐) = (𝑎 + 𝑏) ⋅ (𝑎 + 𝑐) (Distributivity of + over ⋅)
(𝑎 ⋅ 𝑏) + 𝑐 = (𝑎 + 𝑐) ⋅ (𝑏 + 𝑐) (Distributivity of + over ⋅)
∀𝑎 ∈ 𝐵 ∶ ∃𝑎 ∶ 𝑎 + 𝑎 = 1 ∧ 𝑎 ⋅ 𝑎 = 0 with 𝑎 unique

Note that we do not actually require 1 and 0 to be distinct elements, al-
though for any |𝐵| > 1 this will be the case.

Other interpretations of Booleans

We’ve defined a Boolean algebra, above, purely in terms of the operations it
supports. There are, in fact, several algebraic structures that line up with this Those familiar with Java or C++ can think

of the above as the interface, or abstract
base class, for Boolean algebra. Now we are
interested in looking at implementations.

definition.

Natural numbers mod 2: If we take 1 and 0 to be themselves, and ⋅ ≡ ×,
𝑥 ≡ 1 − 𝑥 mod 2 we can get pretty close to building a Boolean algebra on ℕ
mod 2. It remains to define +. We can define 𝑎 ⊕ 𝑏 easily: 𝑎 ⊕ 𝑏 ≡ 𝑎 + 𝑏 mod 2.
Since

𝑎 + 𝑏 = (𝑎 ⊕ 𝑏) ⊕ 𝑎𝑏

we have
𝑎 + 𝑏 ≡ 𝑎 + 𝑏 + 𝑎𝑏 mod 2

giving us a complete “implementation” of a Boolean algebra with two elements.

The Boolean algebra of sets: Although we have only covered sets informally, it
is possible to use a set 𝑆 to form an 𝑛-ary Boolean algebra, where 𝑛 = 2|𝑆|. We
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take

𝐵 = 𝒫(𝐴)

0 ≡ ∅

1 ≡ 𝑆

𝑎 + 𝑏 ≡ 𝑎 ∪ 𝑏

𝑎𝑏 ≡ 𝑎 ∩ 𝑏

𝑎 ≡ 𝑆 − 𝑎

We can veri௫, ಎom the axioms of set theory, that this implementation
conforms to the rules for Boolean algebras.

A Boolean algebra based on a set offers varying degrees of “trueness”. 1(= 𝑆)
is the “purely true” value, and 0(= ∅) is “purely false”, but between these are
the various proper subsets of 𝑆 which represent various degrees of trueness. We
can say that 𝑎 is “more true” than 𝑏 iff 𝑏 ⊂ 𝑎 but note that there are subsets for
which neither is more true than the other. For example, if we take 𝑆 = {𝑥, 𝑦, 𝑧}
then

∅ ⊂ {𝑥}

{𝑥} ⊂ {𝑥, 𝑦}

{𝑥} ⊂ {𝑥, 𝑧}

{𝑥, 𝑦} ⊄ {𝑥, 𝑧} and {𝑥, 𝑧} ⊄ {𝑥, 𝑦}

Logic and Proofs

We are interested here in the theory of proofs: how proofs are constructed, what
constitutes a “valid” proof, and what sort of things can be (dis)proved. We will
begin by looking at inference rules.

Inference rules

An inference rule describes a conditional statement of the form “if 𝑃 then 𝑄”.
The inference rule for this statement would be written:

𝑃
𝑄

An inference rule should be read as “if everything above the line holds, then
whatever is below the line holds”. As another example, we can state “if both 𝑃 We use the term “holds” rather than “is true”

because we may want to use inference rules
to establish properties other than just logical
truth.

and 𝑄, then 𝑅” by writing
𝑃 𝑄
𝑅

The elements above the line (here, 𝑃 and 𝑄) premises while the statement below
the line is called the conclusion.

An inference rule without anything above the line is called an axiom, and it
always holds:

𝑃
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Oಏen we will give names to our rules, so that we can refer back to them
later, by writing the name next to the rule, like so:

Rule name
𝑃
𝑄

Derivations: Given a collection of inference rules, we can chain them together,
matching conclusions to premises. For example, suppose we are given the rules

A 𝑃
A 𝑄

R
𝑃 𝑄
𝑅

R
𝑅
𝑆

From these we can construct a derivation, showing that, within this collection
of rules, 𝑆 holds:

R

R

A 𝑃
A 𝑄

𝑅
𝑆

A derivation like this constitutes a (graphical) proof that the final conclusion
follows ಎom the rules, by showing exactly how to reach it ಎom the axioms.

Logical connectives

The basic machinery of inference rules, although useful, is so simple as to make
many common tasks unbearably tedious. For example, suppose we want to
represent the compound proposition “P and Q”. We could construct, for each
pair of primitive propositions 𝑃 and 𝑃 the compound proposition 𝑃and𝑃, all
defined by rules of the form

𝑃 𝑃
𝑃and𝑃

but this is obviously too cumbersome. Instead, we add a number of logical
connectives, operators which allow us to combine propositions into compound
structures. For example, the logical connective ∧ represents and, and is defined
by the single rule

∧R
𝑃 𝑄
𝑃 ∧ 𝑄

That is, if 𝑃 and 𝑄 are both true (provable) separately, then 𝑃 ∧ 𝑄 is true. Put
another way, to prove 𝑃 ∧ 𝑄, prove 𝑃 and then prove 𝑄. The “R” in the name of the rule will be

explained later.A related connective is ∨, logical or. It is defined by two rules that allow
us to choose which alternative to focus on, and which to throw away. This
captures our intuition that to prove a disjunction, we only have to prove half of
it.

∨R
𝑃

𝑃 ∨ 𝑄
∨R

𝑄
𝑃 ∨ 𝑄

The primitive proposition ⊤ is equivalent to true; it is true everywhere, and
requires no proof:

⊤R ⊤
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If you’re noticing the similarity to Boolean
algebra, you might be wondering where the
equivalent to Boolean negation (“not”) is. Not
is not as important in our system of logic,
because we are interested in what is provable.
In fact, we explicitly deny the Boolean idea
that everything which is not true must be
false. Some things are unprovable, and we
make no claims about their truth or falsity in
that case.

When we come to logical implication, we run into a problem, and have to
take a detour.

Hypothetical judgments

Oಏen we want to allow ourselves the ability to reason not just about what
is true in some system, but also about what might happen if something was
assumed to be true. That is, we want to be able to say, “prove 𝑄, assuming 𝑃”. A
hypothetical judgment gives us this ability.

A hypothetical judgment has the form Γ ⊢ 𝐶 where Γ is a comma-separated
list of assumptions and 𝐶 is the conclusion. The assumption rule allows us to
make use of one of the assumptions to prove an identical conclusion:

Assume
Γ, 𝑃 ⊢ 𝑃

That is, if we assume 𝑃, then we can prove 𝑃. , here, as elsewhere, just stands for “every-
thing else”. We might have other assump-
tions that we are not using right now, but we
still need to keep track of them. When you
do something with a particular assumption,
every other assumption is grouped into  and
just carried along for the ride.

Structural rules: If you want to think of Γ as just an unordered collection of
assumptions in which duplicates are ignored (assuming 𝑃 more than once is no
different ಎom assuming it once) you will be fine, but technically the structure of
the collection of assumptions (typically called the “context”) is itself defined by
rules.

The rule of exchange says that the order of the assumptions does not matter:

Exchange
…𝑃, 𝑃… ⊢ 𝐶
…𝑃, 𝑃… ⊢ 𝐶

The weakening rule says that adding assumptions does not change the prov-
ability of something; if 𝐶 can be concluded assuming Γ, then 𝐶 can also be
concluded assuming Γ and 𝑃:

Weakening
Γ ⊢ 𝐶
Γ, 𝑃 ⊢ 𝐶

This also says that you can “throw away” irrelevant elements of the context if
you want.

Finally, the rule of contraction says that duplicate assumptions can be con-
tracted into a single assumption:

Contract
Γ, 𝑃 ⊢ 𝐶
Γ, 𝑃, 𝑃 ⊢ 𝐶

All of these work together to capture our intuition that all the assumptions
we have are just floating around; we don’t care about their ordering, and irrele-
vant assumptions don’t matter, and assuming the same thing more than once is
no different ಎom assuming it more than once.
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Right and le rules

Now we are in a position to give the rule for→: we can prove 𝑃 → 𝑄 by
assuming 𝑃 and then trying to prove 𝑄 with that assumption. That is, 𝑃 implies
𝑄 if having a proof of 𝑃 enables us to prove 𝑄. We capture this with the→R
rule:

→R
Γ, 𝑃 ⊢ 𝑄
Γ ⊢ 𝑃 → 𝑄

This is the first rule with any assumptions, and thus we have to have Γ. In order
to prove 𝑃 → 𝑄, we add 𝑃 to whatever assumptions we already had.

Becuase we now have assumptions, we need to modi௫ our rules for ∧,∨ and
⊤ to show how Γ should be handled.

• To prove 𝑃∧𝑄 with some assumptions, we just prove 𝑃 and 𝑄 independently,
but with the same assumptions. That is

∧R
Γ ⊢ 𝑃 Γ ⊢ 𝑄
Γ ⊢ 𝑃 ∧ 𝑄

• Similarly, to prove 𝑃 ∨ 𝑄 we choose the particular branch we want to focus
on, but the assumptions stay the same:

∨R
Γ ⊢ 𝑃

Γ ⊢ 𝑃 ∨ 𝑄
∨R

Γ ⊢ 𝑄
Γ ⊢ 𝑃 ∨ 𝑄

• If ⊤ is true everywhere, then it should be true with any assumptions:

⊤R
Γ ⊢ ⊤

All of the rules we’ve seen so far have operated on the proposition to the
right of the ⊢, which is why we call them right rules. There is a corresponding
set of le rules that tell us how to operate on the connectives when they occur
to the le of the ⊢.

• Assuming ⊤ doesn’t get us anything, because ⊤ is always true, so there is no
⊤L rule. If you want, you can think of an extension of the contraction rule
as

Γ ⊢ 𝑃
Γ,⊤ ⊢ 𝑃

I.e., ⊤ is “redundant” in any context.

• Assuming 𝑃∧𝑄 is no different ಎom assuming 𝑃 and 𝑄 separately, so the ∧L
rule just lets us split up a ∧:

∧L
Γ, 𝑃,𝑄 ⊢ 𝐺
Γ, 𝑃 ∧ 𝑄 ⊢ 𝐺

• ∨ is a little trickier. If we assume 𝑃 ∨ 𝑄 and we want to show 𝐺, we don’t
know which of 𝑃 or 𝑄 might be used, so we have to show that we can prove
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𝐺 both when we have just 𝑃, and when we have just 𝑄. Thus, the ∨L rule
splits the derivation into two sub-derivations, each with a different context.

∨L
Γ, 𝑃 ⊢ 𝐺 Γ,𝑄 ⊢ 𝐺

Γ, 𝑃 ∨ 𝑄 ⊢ 𝐺

• If we want to show that 𝐺 follows ಎom 𝑃 → 𝑄 we have to show two things:
we have to show that we can actually use 𝑃 → 𝑄, that is, we have to have a 𝑃
in the first place; second, we have to show that once we have used 𝑃 → 𝑄 to
get a 𝑄, we can use a 𝑄 to get a 𝐺. This gives us the→L rule

→L
Γ, 𝑃 → 𝑄 ⊢ 𝑃 Γ,𝑄 ⊢ 𝐺

Γ, 𝑃 → 𝑄 ⊢ 𝐺

Note that when showing that we can get a 𝑃, we keep 𝑃 → 𝑄 around as an
assumption, because it might be necessary for the process of proving 𝑃. By
the weakening rule, we can always throw it away if it isn’t.

• If we assume false then anything could be true! That is, if we are in a uni-
verse where false is true, water might not be wet, or the sky might be or-
ange, or anything else. Hence, in the ⊥L rule, we can use a ⊥ assumption to
prove any proposition 𝑃:

⊥L
Γ,⊥ ⊢ 𝑃

With this full set of rules, we can proceed to prove the logical versions of
some (but not all) of the Boolean identities. For example, the associativity of ∨:

→R

∨L

∨R

∨R
𝐴 ⊢ 𝐴

𝐴 ⊢ (𝐴 ∨ 𝐵)
𝐴 ⊢ (𝐴 ∨ 𝐵) ∨ 𝐶

∨L

∨R

∨R
𝐵 ⊢ 𝐵

𝐵 ⊢ (𝐴 ∨ 𝐵)
𝐵 ⊢ (𝐴 ∨ 𝐵) ∨ 𝐶

∨R
𝐶 ⊢ 𝐶

𝐶 ⊢ (𝐴 ∨ 𝐵) ∨ 𝐶
(𝐵 ∨ 𝐶) ⊢ (𝐴 ∨ 𝐵) ∨ 𝐶

𝐴 ∨ (𝐵 ∨ 𝐶) ⊢ (𝐴 ∨ 𝐵) ∨ 𝐶
𝐴 ∨ (𝐵 ∨ 𝐶) → (𝐴 ∨ 𝐵) ∨ 𝐶

(We’ve proved this in the leಏ-to-right direction only. The corresponding proof
that (𝐴 ∨ 𝐵) ∨ 𝐶) → 𝐴 ∨ (𝐵 ∨ 𝐶) is leಏ as an exercise for the reader. Generally,
when we want to show that 𝑃 = 𝑄 this means constructing two proofs, one that
𝑃 → 𝑄 and another that 𝑄 → 𝑃. When we do examples, we will prove the
leಏ-to-right version, and leave the right-to-leಏ version as an exercise.)

Since every proof of 𝑃 → 𝑄 must start with→R, we will normally skip this
step and begin with the conclusion 𝑃 ⊢ 𝑄.

(details to follow)

Negation

As mentioned above, negation is not as important here as it was in Boolean
algebra. If we want to say that 𝑃 is not true, we interpret this as “𝑃 is contradic-
tory” and define

¬𝑃 ≡ 𝑃 → ⊥
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That is, to show that 𝑃 is not true, we must show that 𝑃 is “carrying” ⊥ inside
it somehow.

Some of the Boolean identities for negation still apply, but others do not.
For example, we can show that ¬𝑃 ∧ 𝑃 = ⊥:

∧L

→L
𝑃 → ⊥,𝑃 ⊢ 𝑃 𝑃,⊥ ⊢ ⊥

𝑃 → ⊥,𝑃 ⊢ ⊥
(𝑃 → ⊥) ∧ 𝑃 ⊢ ⊥

⊥L
⊥ ⊢ 𝑃 → ⊥∧ 𝑃

But only one direction of the ∨ version, 𝑃 ∨ ¬𝑃 → ⊤ is provable:

∨L
⊤R

𝑃 ⊢ ⊤
⊤R

𝑃 → ⊥ ⊢ ⊤
𝑃 ∨ (𝑃 → ⊥) ⊢ ⊤

∨R

?
⊢ 𝑃

⊤ ⊢ 𝑃 ∨ (𝑃 → ⊥)
or ∨R

?
⊢ 𝑃 → ⊥

⊤ ⊢ 𝑃 ∨ (𝑃 → ⊥)
Similarly, the double-negation identity 𝑃 = ¬¬𝑃 is provable

→R

→L
𝑃, 𝑃 → ⊥ ⊢ 𝑃 ⊥ ⊢ ⊥

𝑃, 𝑃 → ⊥ ⊢ ⊥
𝑃 ⊢ (𝑃 → ⊥) → ⊥

⊥L
⊥ ⊢ (𝑃 → ⊥) → ⊥

But only half of DeMorgan’s laws are

→L

?
(𝑃 ∧ 𝑄) → ⊥ ⊢ 𝑃 ∧ 𝑄

⊥L
⊥ ⊢ (𝑃 → ⊥) ∨ (𝑄 → ⊥)

(𝑃 ∧ 𝑄) → ⊥ ⊢ (𝑃 → ⊥) ∨ (𝑄 → ⊥)

∧R

→R

→L

∨R
(𝑃 ∨ 𝑄) → ⊥, 𝑃 ⊢ 𝑃

(𝑃 ∨ 𝑄) → ⊥, 𝑃 ⊢ 𝑃 ∨ 𝑄 ⊥ ⊢ ⊥
(𝑃 ∨ 𝑄) → ⊥,𝑃 ⊢ ⊥

(𝑃 ∨ 𝑄) → ⊥ ⊢ (𝑃 → ⊥)
→R

→L

∨R
(𝑃 ∨ 𝑄) → ⊥,𝑄 ⊢ 𝑄

(𝑃 ∨ 𝑄) → ⊥,𝑄 ⊢ 𝑃 ∨ 𝑄 ⊥ ⊢ ⊥
(𝑃 ∨ 𝑄) → ⊥,𝑄 ⊢ ⊥

(𝑃 ∨ 𝑄) → ⊥ ⊢ (𝑄 → ⊥)
(𝑃 ∨ 𝑄) → ⊥ ⊢ (𝑃 → ⊥) ∧ (𝑄 → ⊥)

All of these differences in fact stem ಎom our inability to prove

?
⊢ 𝑃 ∨ (𝑃 → ⊥)

In Boolean algebra, it is safe to assume that every Boolean expression evaluates
to either 0 or 1 (or, generalized to Boolean algebras of more than two values,
that every 𝑥 has a negation 𝑥). But logically, there are propositions for which
we have neither a proof, nor a contradiction. Asserting 𝑃 ∨ (𝑃 → ⊥) amounts to
saying “every proposition has either a proof or a refutation” but we know this is
not true. There are some propositions, those representing unsolved problems,
which have neither.
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Universal and existential quantifiers

Our logical system as we have presented it allows us to construct derivations
about “atomic” propositions, propositions that are true or false in and of them-
selves, but we lack the ability to make statements about things. That is, we
cannot say (for example) “every natural number is either odd or even”, because
this is a statement about things (natural numbers, in this case). We will remedy
this by adding variables and predicates to our system, and then examine their
use.

Variables for us (typically lowercase letters 𝑥, 𝑦, etc.) work like they do in
algebra: they stand for unknowns. A predicate is a proposition which is about
some value or values. We usually write predicates as 𝑃(𝑥) although other forms
are possible. For example, 𝑥 ∈ ℕ is a predicate, signi௫ing the property of 𝑥
being a natural number.

Universal quantification: Suppose we have the statement “every natural number
is either odd or even”. We could write this logically as

𝑥 ∈ ℕ → even(𝑥) ∨ odd(𝑥)

but this is rather vague. How do we know we are looking to prove this for “ev-
ery” 𝑥, and not just for some particular 𝑥. We introduce the universal quantifier
to make our intention clear:

∀𝑥∶ 𝑥 ∈ ℕ → even(𝑥) ∨ odd(𝑥)

∀𝑥 introduces 𝑥 as a universally quantified variable. When we say ∀𝑥∶ 𝑃(𝑥) we
are saying the 𝑃 is true for all 𝑥, not just some 𝑥.

(Note that since the form ∀𝑥∶ 𝑃(𝑥) → 𝑄(𝑥) comes up a lot, we have a
shorthand for it: guarded quantifiers. We could write this as ∀𝑥, 𝑃(𝑥) ∶ 𝑄(𝑥).)

How can we prove ∀𝑥∶ 𝑃(𝑥)? Intuitively, proving a ∀ is like proving a very
big ∧. That is, if 𝑥 can be any of 𝑥, 𝑥, … 𝑥𝑛 then we have to show 𝑃(𝑥) ∧
𝑃(𝑥) ∧ ⋯ ∧ 𝑃(𝑥𝑛). Obviously we can’t do this, because the range of values
for 𝑥 might be infinite. Instead, the right-rule for ∀𝑥 replaces 𝑥 with a new,
completely unknown variable 𝑥′. If we can construct a proof about 𝑥′ despite
knowing nothing about it, then obviously we could plug in any actual value for
𝑥′ and the proof would still hold. Thus, a generic proof serves as a valid proof of
a universal:

∀R
Γ ⊢ 𝑃(𝑥′)

Γ ⊢ ∀𝑥∶ 𝑃(𝑥)
where 𝑥′ is a new variable

If we assume ∀𝑥∶ 𝑃(𝑥) then we could assume 𝑃 for any particular value we
like. (This is equivalent to using ∧L to split up the ∧ implicit in the ∀, and
then using the weakening rule to throw away all the 𝑃(−) assumptions we don’t
need.) Thus, the ∀L rule lets us assume 𝑃 for any value we like:

∀L
Γ, ∀𝑥∶ 𝑃(𝑥), 𝑃(𝑡) ⊢ 𝐺
Γ, ∀𝑥∶ 𝑃(𝑥) ⊢ 𝐺

or ∀L
Γ, 𝑃(𝑡), 𝑃(𝑡), … ⊢ 𝐺
Γ, ∀𝑥∶ 𝑃(𝑥) ⊢ 𝐺
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(The first version keeps the ∀𝑥∶ 𝑃(𝑥) assumption around so that we can use it to
generate additional 𝑃(𝑡′)’s if we need them. The second version just constructs
all the 𝑃(𝑡) assumptions we need all at once, and then uses weakening to throw
away the ∀.)

We can use this to show that, for example, the successor of every natural
number is itself a natural number:

∀R

→R

Nat-S
𝑥′ ∈ ℕ ⊢ 𝑥′ ∈ ℕ
𝑥′ ∈ ℕ ⊢ 𝑆(𝑥′) ∈ ℕ

𝑥′ ∈ ℕ → 𝑆(𝑥′) ∈ ℕ
∀𝑥∶ 𝑥 ∈ ℕ → 𝑆(𝑥) ∈ ℕ

Similarly, if we define odd and even in terms of each other

Even-0
even(0)

Odd-1
odd(1)

Even-S
odd(𝑛)

even(𝑆(𝑛))
Odd-S

even(𝑛)
odd(𝑆(𝑛)

we can show that the success of every even number is odd:

∀R

→R

Odd-S
even(𝑥′) ⊢ even(𝑥′)
even(𝑥′) ⊢ odd(𝑆(𝑥′))

even(𝑥′) → odd(𝑆(𝑥′))
∀𝑥∶ even(𝑥) → odd(𝑆(𝑥))

(Note that a proof of ∀𝑥, 𝑃(𝑥) ∶ 𝑄(𝑥) will always start with ∀R, followed
by→R. We’ll normally leave these as implicit, and start the proof at 𝑃(𝑥′) ⊢
𝑄(𝑥′).)

Suppose we want to show that (∀𝑥∶ 𝑃(𝑥)) → (∀𝑦∶ 𝑃(𝑦)). This basically
amounts to showing that variable names do not matter. We begin by doing→R
and then ∀R (with 𝑦 = 𝑦′) implicitly:

?
∀𝑥∶ 𝑃(𝑥) ⊢ 𝑃(𝑦′)

When we apply the ∀L rule, we get to choose 𝑡. In particular, we can choose 𝑡 to
be the new variable 𝑦′ (𝑦′ must be new when we introduce it, but aಏer that, it
exists and we can use it to construct values.) So we have

∀L (𝑡 = 𝑦′)
𝑃(𝑦′) ⊢ 𝑃(𝑦′)

∀𝑥∶ 𝑃(𝑥) ⊢ 𝑃(𝑦′)

This hopefully illustrates the difference between the “new” variable 𝑥′ and
the value 𝑡: 𝑥′ must be new when we introduce it, while 𝑡 must be built up ಎom
“old” (existing) things: variables, or, if needed, values like 0 or constructors like
the successor.

Existential quantification: Suppose we are asked to prove

𝑥 ∈ ℕ ∧ 𝑥 > 1
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What exactly are we asking for here? Surely not ∀𝑥∶ 𝑥 ∈ ℕ ∧ 𝑥 > 1, because that
is not true (0 is not > 1). Instead, we are asking whether there is any 𝑥 that will
satis௫ these conditions. We call this existential quantification and write it

∃𝑥∶ 𝑥 ∈ ℕ ∧ 𝑥 > 1

To prove an existential, we need to supply an actual value which makes the
statement true:

∃R
Γ ⊢ 𝑃(𝑡)

Γ ⊢ ∃𝑥∶ 𝑃(𝑥)
(As ∀ corresponds to a kind of implicit ∧, ∃ corresponds to an implicit ∨. This
rule amounts to choosing the branch of the ∨ to pursue.)

If we assume that “there exists an 𝑥 such that 𝑃(𝑥)” then we can assume 𝑃
about anything. To capture this notion, we assume 𝑃(𝑥′) where 𝑥′ is new:

∃L
Γ, 𝑃(𝑥′) ⊢ 𝐺

Γ, ∃𝑥∶ 𝑃(𝑥) ⊢ 𝐺

We can double-check our leಏ and right rules by proving that we can prove
an existential by assuming it:

∃L

∃R (𝑦 = 𝑥′)
𝑃(𝑥′) ⊢ 𝑃(𝑥′)

𝑃(𝑥′) ⊢ ∃𝑦∶ 𝑃(𝑦)

∃𝑥∶ 𝑃(𝑥) ⊢ ∃𝑦∶ 𝑃(𝑦)

Rules for formal logic

With ∀ and ∃ we have completed our system for doing formal logic. The rules
are summarized in figure 1.

Proof by induction

The generic method of proving a ∀𝑥 is oಏen too weak; although we can make
use of assumptions about 𝑥, we cannot exploit knowledge about the structure
of 𝑥. For example, if we have ∀𝑥, 𝑥 ∈ ℕ∶ 𝑃(𝑥) we have almost no way of using
the structure of ℕ in our proof. Proof by induction is a “trick” for proving a
universal that relies on the recursive structure of the set we are operating in.

For example, in ℕ every natural number has the property that it is either
a 0 or a successor to some other natural number. Strip off enough successors
and eventually we’ll get down to 0. Proof by induction starts at 0, by showing
that 𝑃(0) is directly true. It then proceeds to show how to “strip off ” a success
in the proof of 𝑃(𝑆(𝑛)) to get down to a proof of 𝑃(𝑛). Because we could, given
any particular natural number 𝑛, repeat this process enough times to reach the
0-case, we could use this method to construct a particular chain of proofs (𝑃(𝑛)
is true because 𝑃(𝑛 − 1) is true because …because 𝑃(0) is true directly). Proof by
induction is in fact an algorithm for building proofs, but the existence of such
an algorithm is itself a proof of the universal property! Put another way, if we can write a program

that takes any ℕ as an input, and returns a
proof of 𝑃 for that input as its output, then
the program itself serves as proof that 𝑃 holds
for all ℕ.
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Assume
Γ, 𝑃 ⊢ 𝑃

⊤R
Γ ⊢ ⊤

⊥L
Γ,⊥ ⊢ 𝑃

∧R
Γ ⊢ 𝑃 Γ ⊢ 𝑄
Γ ⊢ 𝑃 ∧ 𝑄

∧L
Γ, 𝑃,𝑄 ⊢ 𝐺
Γ, 𝑃 ∧ 𝑄 ⊢ 𝐺

∨R
Γ ⊢ 𝑃

Γ ⊢ 𝑃 ∨ 𝑄
∨R

Γ ⊢ 𝑄
Γ ⊢ 𝑃 ∨ 𝑄

∨L
Γ, 𝑃 ⊢ 𝐺 Γ,𝑄 ⊢ 𝐺

Γ, 𝑃 ∨ 𝑄 ⊢ 𝐺

→R
Γ, 𝑃 ⊢ 𝑄
Γ ⊢ 𝑃 → 𝑄

→L
Γ, 𝑃 → 𝑄 ⊢ 𝑃 Γ,𝑄 ⊢ 𝐺

Γ, 𝑃 → 𝑄 ⊢ 𝐺

∀R
Γ ⊢ 𝑃(𝑥′)

Γ ⊢ ∀𝑥∶ 𝑃(𝑥)
where 𝑥′ is a new variable

∀L
Γ, ∀𝑥∶ 𝑃(𝑥), 𝑃(𝑡) ⊢ 𝐺
Γ, ∀𝑥∶ 𝑃(𝑥) ⊢ 𝐺

or ∀L
Γ, 𝑃(𝑡), 𝑃(𝑡), … ⊢ 𝐺
Γ, ∀𝑥∶ 𝑃(𝑥) ⊢ 𝐺

∃R
Γ ⊢ 𝑃(𝑡)

Γ ⊢ ∃𝑥∶ 𝑃(𝑥)
∃L

Γ, 𝑃(𝑥′) ⊢ 𝐺
Γ, ∃𝑥∶ 𝑃(𝑥) ⊢ 𝐺

where 𝑥′ is a new variable

Figure 1: Rules for logical propositions

Consider the recursive definition of double(𝑥) = 2𝑥:

Dbl-Z
double(0) = 0

Dbl-S
double(𝑥) = 𝑦

double(𝑆(𝑥)) = 𝑆(𝑆(𝑦))

Suppose we want to prove that

∀𝑥 ∈ ∶ ∃𝑦∶ double(𝑥) = 𝑦

This amounts to showing that double is total; that is, it is defined for all pos-
sible inputs. If we try to prove this generically, we will get stuck. But we can
prove it inductively, by induction on 𝑥. We divide the proof into two cases, one
for 0 and one for the successor:

• Base case (𝑥 = 0): Then we have

∃R (𝑦 = )

Dbl-Z
double(0) = 0

∃𝑦∶ double(0) = 𝑦
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• Inductive case (𝑥 = 𝑆(𝑥′)): Here we get to assume the “inductive hypothesis”,
the smaller version of our proof statement. In this case, our IH is

IH
∃𝑦′ ∶ double(𝑥′) = 𝑦′

That is, while we are trying to prove that 𝑆(𝑥′) has a double, we get to assume
that 𝑥′ has a double, and it is 𝑦′. So all we have to do is reconstruct 𝑦 ಎom
𝑦′ by following the Dbl-S rule:

∃R (𝑦 = 𝑆(𝑆(𝑦′)))

Dbl-S

IH
double(𝑥′) = 𝑦′

double(𝑆(𝑥′)) = 𝑆(𝑆(𝑦′))
∃𝑦 ∶ double(𝑆(𝑥′)) = 𝑦

QED
In order to construct an inductive proof, we need several to identi௫ several

elements:

• The variable of induction. We need to choose the variable (which must
be universally quantified) that our inductive proof is going to be about. If
there is only one universally quantified variable (as in the above proof ) then
the “choice” is easy. If there are two or more (e.g., in the proof of ∀𝑥, 𝑦 ∈
ℕ∶ ∃𝑧∶ 𝑥 + 𝑦 = 𝑧) then we make our decision by looking at the definition.
The inductive variable must a variable which the definition recurses on. E.g.,
𝑥 + 𝑦 is defined by recursion on 𝑥, so we would choose 𝑥.

• The base case: The base case must be true directly, because we cannot rely
on the IH to prove it. Again, usually the choice of the base case will be
dictated by the base case of the definition. The base case for + is 0 + 𝑦 = 𝑦,
so we would choose 0 to be the value of the variable of induction in the base
case.

• The inductive case: Similarly, the value of the variable of induction in the
inductive case will be dictated by the definition. It must be “larger” than
some smaller value, for example, 𝑥 = 𝑆(𝑥′).

• The inductive hypothesis: Having chosen the value for the inductive case, we
rephrase the original proof statement in terms of the “smaller” value to give
the inductive hypothesis.

As a further example, consider the inductive proof that

∀𝑥, 𝑦 ∈ ℕ∶ ∃𝑧∶ 𝑥 + 𝑦 = 𝑧

(Proof that + is total.)

• There are two universally quantified variables, 𝑥 and 𝑦, so our choice of the
variable of induction will be between them. + is defined by recursion on its
first operand (here, 𝑥) so 𝑥 will be our variable of induction.
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• The base case for + is 0 + 𝑦 = 𝑦 so we choose 𝑥 = 0 as our base case.

• The recursive case for + is 𝑆(𝑥′) + 𝑦 = 𝑆(𝑧′) so we choose 𝑥 = 𝑆(𝑥′) to be our
inductive case.

• In the inductive case, the inductive hypothesis is just the original proof
statement, rephrased to be about the “smaller” 𝑥′:

∀𝑦 ∈ ℕ∶ ∃𝑧∶ 𝑥′ + 𝑦 = 𝑧

Paragraph proofs: Derivation-style proofs can become cumbersome, especially
for inductive proofs. An alternate presentation for proofs is paragraph-style
proofs, where the steps of the proof are presented linearly. This sometimes
requires careful bookkeeping (as when different branches of the proof have
different goals and assumptions) but gives us the opportunity to gloss over the
more obvious steps.

(details to follow)

Set Theory

Here we are interested in the properties of sets. A set is an unordered collection
of objects, all sharing some important property or properties, with an impor-
tant restriction: no duplicates are present in a set. For example, this is a set:

{1, 2, 3, 4}

But this is not: Sets are normally written between curly-
braces.{1, 2, 3, 4, 3}

Since writing out the elements of a set is oಏen tedious (for large sets), and
sometimes impossible (for infinite sets), we also use set builder notation:

{𝑥 ∣ 𝑥 is a prime number }

would give us the set of all squares of primes (i.e., {4, 9, 25, 49, …}).
Some sets are so common that they have special names (we’ve seen some of

these before); these are listed in figure 2.

Set Description

ℕ Natural numbers (i.e., whole numbers ≥ 0)
ℤ Integers
ℚ Rational numbers (ಎactions)
ℝ Real numbers
ℂ Complex numbers

Figure 2: Special sets

Sometimes you’ll see the notation ℤ∗ for
“integers ≥ ” and ℤ+ for “integers ≥ ”.
Likewise, ℕ𝑘 is sometimes used for natural
numbers modulo 𝑘, i.e., {, , … , 𝑘 − }.

When we need to write a variable for an unknown set, we’ll usually write it
as an uppercase letter.
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Oಏen when we talk about sets we need to make it clear what kinds of things
they can contain. We do this by stating what the universe of discourse is. The
universe is just another set, denoted 𝒰 , but every other set we talk about must
draw its elements ಎom 𝒰 . I.e., as described below, every set must be a

subset of 𝒰 .

Haskell note:
In Haskell, we’ll use lists as sets, so a set of elements of type a will have

type [a]. We’ll have to take care to ensure that our lists are always sorted and
de-duplicated. We will provide you with a function distinct which will take an
arbitrary list and transform it into a valid set:

ghci> distinct [1,3,2,1,3,5]
[1,2,3,5]

We will use the elem function as the equivalent to ∈:

ghci> 3 `elem` [1,2,3,5]
True

And finally, we can use list comprehensions as an analogue to set builder
notation. For example,

{𝑥 ∣ 𝑥 ∈ {1… 10}}

becomes

[x^2 | x <- [1..10]]

Operations on sets

Perhaps the fundamental operation on sets is membership. The logical propo-
sition 𝑒 ∈ 𝑆 states “𝑒 is a member of set 𝑆”. Likewise, 𝑒 ∉ 𝑆 states “𝑒 is not a
member of 𝑆”. Since ∈ is a proposition, we can make logical statements using
it:

𝑒 ∈ 𝑆 → 𝑒 ∈ 𝒰

This expresses our statement above that all the elements of the sets we are
talking about must be elements of the universe.

If we want to relate two sets to each other, we can ask, to what extent do
they overlap? If, given two sets 𝐴 and 𝐵, we find that every element of 𝐴 is also
an element of 𝐵 then we say that “𝐴 is a subset of 𝐵” and write this as 𝐴 ⊆ 𝐵.
Logically,

𝐴 ⊆ 𝐵 ⇔ ∀𝑎 ∈ 𝐴 ∶ 𝑎 ∈ 𝐵

If 𝐴 ⊆ 𝐵 then we can also say that 𝐵 is a superset of 𝐴. Sometimes we write 𝐴 ⊂ 𝐵 to mean that 𝐴 is
a “proper” subset of 𝐵, that is, 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵.
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There are a few easy-to-veri௫ tautologies about set membership and the
subset relation:

𝑎 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 → 𝑎 ∈ 𝐵 (Definition of ⊆)
𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 → 𝐴 = 𝐵 (Symmetry)
𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶 (Transitivity)

𝐴 ⊆ 𝐴, for any set 𝐴 (Reflexivity)

Given two sets, there are a number of operations we can perform that will
result in a new set:

𝐴 ∪ 𝐵 (Union)
𝐴 ∩ 𝐵 (Intersection)
𝐴 ⧵ 𝐵 (Set difference)
𝐴 ⊖ 𝐵 (Symmetric difference)

Each of these can be defined by a set builder on 𝒰 and the logical equivalent
to the above descriptions:

Operation Set builder expression

𝐴 ∪ 𝐵 {𝑒 ∣ 𝑒 ∈ 𝒰 ∧ (𝑒 ∈ 𝐴 ∨ 𝑒 ∈ 𝐵)}
𝐴 ∩ 𝐵 {𝑒 ∣ 𝑒 ∈ 𝒰 ∧ (𝑒 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵)}
𝐴 ⧵ 𝐵 {𝑒 ∣ 𝑒 ∈ 𝒰 ∧ (𝑒 ∈ 𝐴 ∧ 𝑒 ∉ 𝐵)}
𝐴 ⊖ 𝐵 {𝑒 ∣ 𝑒 ∈ 𝐴 ∪ 𝐵 ∧ 𝑒 ∉ 𝐴 ∩ 𝐵}

Figure 3: Set operations

The cardinality of a set 𝐴, written |𝐴| roughly defines the “size” of the set.
For finite sets, this is simply the number of (unique) elements in the set. Interestingly, there are different “sizes” of

infinite sets. For example, |ℕ| < |ℝ|; the set
of real numbers has more elements than the
set of natural numbers, even though both are
infinite!

If 𝐴 ⊆ 𝐵 then we have |𝐴| ≤ |𝐵|. Similarly, if 𝐴 ⊂ 𝐵 then |𝐴| < |𝐵|.
Some properties relating cardinality and the above set operations are easy to

derive:
For sets constructed via the set builder notation, note that we have

|{… ∣ 𝑠 ∈ 𝑆, 𝑠 ∈ 𝑆, … , 𝑠𝑛 ∈ 𝑆𝑛, …}| ≤
𝑛

𝑖=
|𝑆𝑖|

Powersets: The powerset of a set 𝐴 is the set of all subsets of 𝐴. That is

𝒫(𝐴) = {𝐴′ ∣ 𝐴′ ⊆ 𝐴}

For example,
𝒫({1, 2}) = {∅, {1}, {2}, {1, 2}}
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|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

|𝐴 ∩ 𝐵| ≤ |𝐴| ∧ |𝐴 ∩ 𝐵| ≤ |𝐵|

or equivalently
|𝐴 ∩ 𝐵| ≤ max(|𝐴|, |𝐵|)
|𝐴 ⧵ 𝐵| = |𝐴| − |𝐴 ∩ 𝐵|

|𝐴 ⊖ 𝐵| = |𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|

Figure 4: Cardinality of set operations

Note that the powerset of any set always includes the empty set. This is true
even of the empty set itself:

𝒫(∅) = {∅}

Note that {∅} ≠ ∅. The former is a set containing a single element, while the
later contains no elements.

One way to view the construction of the powerset is as if each element of the
input set had a “switch” attached to it, labeled I௹/Oఀ. We can construct any
particular subset by flipping the switches: those whose elements are I௹ will be
in the subset, and those which are Oఀ will not. I.e., we have something like

{1I௹, 2Oఀ, 3Oఀ, 4I௹} ⟶ {1, 4}

By looking at all possible configurations of switches, we can see all the
possible subsets.

Here, for example, are all the subsets of {1, 2, 3}:

1 2 3 Subset

Oఀ Oఀ Oఀ ∅
I௹ Oఀ Oఀ {1}
Oఀ I௹ Oఀ {2}
I௹ I௹ Oఀ {1, 2}
Oఀ Oఀ I௹ {3}
I௹ Oఀ I௹ {1, 3}
Oఀ I௹ I௹ {2, 3}
I௹ I௹ I௹ {1, 2, 3}

We can also generate the powerset by an inductive formulation:

𝒫(∅) = {∅} (Base case)

Let 𝐴 = {𝑥} ∪ 𝐴′ with 𝑥 ∉ 𝐴′. Then

𝒫(𝐴) = 𝒫({𝑥} ∪ 𝐴′) = 𝒫(𝐴′) ∪ {{𝑥} ∪ 𝑃 ∣ 𝑃 ∈ 𝒫(𝐴′)} (Inductive case)
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That is, at each inductive step, we choose an arbitrary element of 𝐴, remove
it producing 𝐴′, recursively construct 𝒫(𝐴′), and then add 𝑥 to every set in
𝒫(𝐴′) and union that with the (unchanged) 𝒫(𝐴′). At some point we will
remove the last element, at which point 𝐴′ = ∅ and the recursive powerset will
use the base case.

Cardinality of 𝒫 : How many subsets does a given set have? Looking at the
above table, we see that for a set with three elements, there are eight possible
subsets, including the empty set. For each element in the original set, it’s
“switch” can be in one of two states. Thus, by the rule of product, the total
number of possible configurations is 2 × 2 × 2 = 2 = 8. In general, if 𝑛 = |𝐴|
then 2𝑛 = |𝒫(𝐴)|. Figuring out how many subsets to expect is a good way to
check your work, if you are trying to generate all the subsets.

Equality between sets: Since sets are unordered, we define equality between sets
to mean “containing the same elements”. That is,

𝐴 = 𝐵 iff (∀𝑎 ∈ 𝐴∶ 𝑎 ∈ 𝐵) ∧ (∀𝑏 ∈ 𝐵∶ 𝑏 ∈ 𝐴)

or equivalently,
𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

Two sets with the same cardinality (possibly infinite, but of the “same size”
infinite) are isomorphic even if they are not equal. Isomorphism just means
that we can construct a pairing of elements between the two sets, such that
each element ಎom 𝐴 is paired with a single unique element ಎom 𝐵, and each
element of 𝐵 is paired with a single unique element of 𝐴. Because we can always
move “back and forth” between the two sets, we can convert any operation on
𝐴 into an operation on 𝐵, and vice versa, without loss of information. Thus,
two isomorphic sets can be regarded as being “extensionally equivalent”, because
anything we can do on the one can be done on the other.

Relations on Sets

Relations allow us to construct “connections” between sets in various ways. In
this section, we will examine the various kinds of relations and their properties.

Cross products: The cross product of two sets 𝐴 and 𝐵 is defined to be

𝐴 × 𝐵 = {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

For example,

{1, 2} × {3, 4} = {(1, 3), (2, 3), (1, 4), (2, 4)}

The cross product of two sets essentially gives us every possible pairing of
items ಎom the first set with items ಎom the second set. It should be relatively
obvious ಎom the definition that |𝐴 × 𝐵| = |𝐴||𝐵|.
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We can easily extend the cross product to three (or more) sets:

𝐴 × 𝐵 × 𝐶 = {(𝑎, 𝑏, 𝑐) ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶, }

𝐴 × 𝐵 × 𝐶 × 𝐷 = {(𝑎, 𝑏, 𝑐, 𝑑) ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷}

and so forth.
Note that if 𝐴 = ∅ or 𝐵 = ∅ then 𝐴 × 𝐵 = ∅. This generalizes to 𝑛-

dimensional products: if any of the sets composing the product is empty, then
the entire product is empty, too. If it isn’t obvious why 𝐴 × ∅ = ∅, consider

that |𝐴 ×∅| = |𝐴||∅| and |∅| = , and that ∅
is the only set which has cardinality .

An 𝑛-dimension product includes 𝑛 projection functions, 𝑝…𝑝𝑛, which can
extract the individual elements of the product. That is, given 𝑥 ∈ 𝐴 × 𝐵 (i.e.,
𝑥 = (𝑎, 𝑏) for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵) we have

𝑝(𝑥) = 𝑎

𝑝(𝑥) = 𝑏

Sometimes we will need a cross product of a set with itself: 𝐴 × 𝐴. In this
case, we will denote this with the shorthand 𝐴 (generalizes to 𝐴 × 𝐴 × … = 𝐴𝑛)
unless this would be ambiguous.

Relations

A relation R between two (or more) sets is just a subset of their cross product.
That is,

R ⊆ 𝐴 × 𝐵

Thus, a relation can be thought of as some kind of “pairing” of some elements
ಎom 𝐴 to some elements of 𝐵. Note that in the most general sense, it’s possible
for a single element of 𝐴 to relate to 0, 1, or many elements of 𝐵, and vice versa.
We will later examine specialized relations in which this is restricted in some
way.

Although we can indicate that 𝑎 and 𝑏 are related via R by writing (𝑎, 𝑏) ∈ R

it is usually easier to just write 𝑎 R 𝑏. That is, we treat R as defining a logical
proposition: given 𝑎 and 𝑏, we can ask, is it the case that 𝑎 R 𝑏? and the answer
will be Yes or No. This implies that we can connect statements about relational
membership using the logical connectives ∧, ∨, etc.

We can generalize these “two-dimensional” relations to relations between
three or more sets. Higher-dimensional relations are the basis for relational
database systems, so we’ll look at them, briefly, later.

For a two-dimensional relation R ⊆ 𝐴 × 𝐵, we usually refer to 𝐴 as the
domain and 𝐵 as the range. Also, since saying that R is defined between 𝐴 and 𝐵
by writing R ⊆ 𝐴 × 𝐵 is rather cumbersome, we will write R ∶ 𝐴 × 𝐵.

Given R ∶ 𝐴 × 𝐵 and a particular 𝑎 ∈ 𝐴, we can ask for the set of all 𝑏 ∈ 𝐵 that
are related to 𝑎:

{𝑏 ∣ 𝑎 R 𝑏}

Similarly, given a 𝑏 we can ask for all the related 𝑎’s.
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Properties of relations

We can classi௫ relations by the properties they have.

• If 𝐴 = ∅ or 𝐵 = ∅ then R = ∅ for any R ∶ 𝐴 × 𝐵.

Given two relations R ∶ 𝐴×𝐵 and S ∶ 𝐵 ×𝐶 we can form the composition of the
two relations, R ∘ S ∶ 𝐴 × 𝐶:

R ∘ S = {(𝑎, 𝑐) ∣ 𝑎 R 𝑏, 𝑏 S 𝑐}

Given a relation R ∶ 𝐴 × 𝐵 we can define its converse, R𝑐 ∶ 𝐵 × 𝐴 as

R𝑐 = {(𝑏, 𝑎) ∣ 𝑎 R 𝑏}

or equivalently
𝑏 R𝑐 𝑎 iff 𝑎 R 𝑏

Property Logical definition

Functionality ∀𝑎 ∶ ∃𝑏, 𝑏 ∶ (𝑎 R 𝑏 ∧ 𝑎 R 𝑏) → 𝑏 = 𝑏
Totality ∀𝑎 ∈ 𝐴 ∶ ∃𝑏 ∈ 𝐵 ∶ 𝑎 R 𝑏
Partiality ∃𝑎 ∈ 𝐴 ∶ ¬∃𝑏 ∈ 𝐵 ∶ 𝑎 R 𝑏

Figure 5: Properties of relations on 𝐴 × 𝐵

Note that there is some ambiguity in the use
of the term “partial”. Some sources consider
all functional relations to be partial, and the
total functions as a (proper) subset of these.
Others consider the sets of partial and total
functions to be distinct.

A functional relation is one in which, if 𝑎 R 𝑏 then 𝑏 is unique; i.e., there is
only one 𝑏 related to that particular 𝑎. (But note that functionality does not
require that every 𝑎 ∈ 𝐴 have a related 𝑏; if this is not the case then the function
is partial.) Since functional relations “act like” functions, we typically name
them 𝑓, 𝑔, etc., and write 𝑎 f 𝑏 as 𝑓(𝑎) = 𝑏.

A relation which is both functional and total is a total function; this is what
we normally think of a function as being: we can plug in any 𝑎 ∈ 𝐴 and be
guaranteed to get one, and only one, 𝑏 ∈ 𝐵 out as a result. Note that totality is Oಏen we’ll speci௫ that a relation 𝑓 is a partial

function ಎom 𝐴 to 𝐵 by writing 𝑓 ∶ 𝐴 ⇀ 𝐵.
Similarly, if 𝑓 is total we will write 𝑓 ∶ 𝐴 → 𝐵

simply the negation of partiality; a not-partial function is, by-definition, total.
Many interesting properties are only meaningful for relations defined ಎom

a set to itself; i.e., R ∶ 𝐴. Figure 6 lists these properties, together with their
logical definitions.

Property Logical definition

Reflexivity ∀𝑥 ∈ 𝒰 ∶ 𝑥 R 𝑥
Symmetry ∀𝑎, 𝑏 ∶ 𝑎 R 𝑏 → 𝑏 R 𝑎
Antisymmetry ∀𝑎, 𝑏 ∶ (𝑎 R 𝑏 ∧ 𝑏 R 𝑎) → 𝑎 = 𝑏
Antisymmetry (def. 2) ∀𝑎, 𝑏, 𝑎 ≠ 𝑏 ∶ ¬(𝑎 R 𝑏 ∧ 𝑏 R 𝑎)
Transitivity ∀𝑎, 𝑏, 𝑐 ∶ (𝑎 R 𝑏 ∧ 𝑏 R 𝑐) → 𝑎 R 𝑐

Figure 6: Properties of relations on 𝐴 × 𝐴

Note that symmetry and antisymmetry are not negations of each other.
Symmetry requires that all relations “go both ways”, while antisymmetry re-
quires that relations between distinct elements only go one way. The distinction
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“distinct” is important. It is in fact possible (and even easy) to construct a re-
lation that is both symmetric and antisymmetric, or both not-symmetric and
not-antisymmetric.

What are the converses of these properties? E.g., if we form the converse of
a transitive relation, is the result transitive?)

Special relations: functions

For a functional relation 𝑓 ∶ 𝐴 → 𝐵 we can ask, for some 𝐴′ ⊂ 𝐴, what is
the image of 𝑓 under 𝐴′? That is, what is the subset of 𝐵 that would result if
we were to plug in every value in 𝐴′ and collect all the results? Formally, the
definition of the image is

𝑓(𝐴′) = {𝑓(𝑎′) ∣ 𝑎′ ∈ 𝐴}

(Note that we are “overloading” our function call notation to work on sets as
well as values.)

For functional relations (particularly for total functions), there are three
interesting properties:

Property Logical definition

One-to-one ∀𝑎, 𝑎 ∈ 𝐴 ∶ 𝑎 R 𝑏 ∧ 𝑎 R 𝑏 → 𝑎 = 𝑎
Onto ∀𝑏 ∈ 𝐵 ∶ ∃𝑎 ∈ 𝐴 ∶ 𝑎 R 𝑏
One-to-one correspondence Iǌective ∧ Surjective

Figure 7: Properties of functions

One-to-one is sometimes called iǌective.
Onto is sometimes called surjective. And one-
to-one correspondence is sometimes called
bĳective. But it’s a lot harder to remember the
meaning of these names.

A one-to-one function preserves distinctness; that is, for distinct inputs it will
always produce distinct outputs.

An onto function 𝑓 ∶ 𝐴 → 𝐵 is one whose image under 𝐴 is all of 𝐵. That is,
nothing of 𝐵 is “leಏ out”.

A one-to-one correspondence both preserves distinctness, and “covers” all
of 𝐵. This implies that every 𝑎 ∈ 𝐴 maps to a distinct 𝑏 ∈ 𝐵, and similarly,
every 𝑏 ∈ 𝐵 is the result of some 𝑓(𝑎). Thus, for any 𝑏 we can find its inverse
𝑎; one-to-one correspondences are thus invertible. For any 𝑓 that is a one-to-
one correspondence, there is a (unique) inverse function 𝑓−, which is also a
one-to-one correspondence.

A one-to-one correspondence is sometimes called an isomorphism and if
an isomorphism exists between two sets then they are isomorphic in the sense
defined above. This implies that the sets have the same cardinality.

An isomorphism ಎom a set to itself is called a permutation. For example, we
can define the isomorphism 𝑓 ∶ {1, 2, 3, 4} → {1, 2, 3, 4} by

𝑓(1) = 4

𝑓(2) = 1

𝑓(3) = 2

𝑓(4) = 3
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Special relations: operators

A binary operator is a ternary (3-dimensional) relation which functionally maps
pairs to a set. That is, an operator ⋆ ∶ 𝐴 × 𝐵 → 𝐶. We will only consider
operators defined on a single set. For example, natural number addition is
+ ∶ ℕ ×ℕ →ℕ.

Operators can have several interesting properties:

Property Logical definition

Commutative ∀𝑎, 𝑏 ∶ 𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎
Associative ∀𝑎, 𝑏, 𝑐 ∶ (𝑎 ⋆ 𝑏) ⋆ 𝑐 = 𝑎 ⋆ (𝑏 ⋆ 𝑐)
Distributive (of ⋆ over ⊞) ∀𝑎, 𝑏, 𝑐 ∶ 𝑎 ⋆ (𝑏 ⊞ 𝑐) = (𝑎 ⋆ 𝑏) ⊞ (𝑎 ⋆ 𝑐)

Figure 8: Properties of operators

Special relations: equivalences and partial orders

Equivalence relations: A relation which is reflexive, symmetric, and transitive
is call an equivalence relation. An equivalence relation is, roughly speaking, one
that “acts like” equality: everything is equivalent to itself, you can “swap the
sides” of an equivalence and it will still hold, and equivalnce “propagates” so
that if 𝑎 ≡ 𝑏 and 𝑏 ≡ 𝑐 then we know that 𝑎 ≡ 𝑐.

The simplest example of an equivalence relation is equality itself. Some
more interesting examples include:

• Set isomorphism. If we define 𝐴 ≡ 𝐵 to mean “𝐴 is isomorphic to 𝐵” then
≡ is an equivalence relation. Every set is isomorphic to itself (reflexivity),
if two sets are isomorphic then there are isomorphisms in both directions
(symmetry), and the composition of two isomorphisms is also an isomor-
phism (transitivity).

• Natural number equivalence mod 𝑝.

Given an equivalence relation ≡ on a set 𝑆, we can construct the quotient of
𝑆 on ≡:

(details to follow)
We can use this to partition 𝑆 into its equivalence classes. An equivalence

class is a set whose elements are all equivalent according to some equivalence
relation. We denote the equivalence class of 𝑎 with respect to ≡ as [𝑎]≡ and
define it as

[𝑎]≡ = {𝑏 ∣ 𝑎 ≡ 𝑏}

Note that because of reflexivity, we have ∀𝑎 ∶ 𝑎 ∈ [𝑎]≡.
If we split a set up into all its equivalence classes, this partitions the set.

Technically, any partition defines an equivalence relation, just as any equivalence
relation defines a partition. The partition of 𝑆 on ≡ is denoted

𝒫≡(𝑆) = {[𝑎]≡ ∣ 𝑎 ∈ 𝑆}
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(details to follow)
To be more precise, a partition 𝑃 of 𝑆 is a set of sets that satisfies the follow-

ing properties:

• Nontrivial: ∅ ∉ 𝑃

• Exhaustive: 𝑆 = ⋃𝑝∈𝑃 𝑝

• Disjoint: ∀𝑝 ∈ 𝑃, 𝑝 ∈ 𝑃, 𝑝 ≠ 𝑝 ∶ 𝑝 ∩ 𝑝 = ∅.

Given a partition 𝑃 on 𝑆, we can also (re)construct the equivalence relation
that it defines:

≡= {(𝑎, 𝑏) ∣ 𝐶 ∈ 𝑃, 𝑎 ∈ 𝐶, 𝑏 ∈ 𝐶}

or, with slightly different phrasing

≡= 
𝐶∈𝑃

𝐶 × 𝐶

Partial orders: A relation which is reflexive, antisymmetric, and transitive is
called a partial order. Partial orders can be thought of as a generalization of the
idea of “less-than or equal to”. 𝑎 ⪯ 𝑏 can be thought of as stating that 𝑎 precedes
𝑏 (or 𝑎 = 𝑏, as reflexivity requires that every element be related to itself ).
But note that, unlike the ≤ relation which is total, partial orders are, as their
name implies, partial; it is not necessarily the case that, for every 𝑎, 𝑎 ∈ 𝐴,
either 𝑎 ⪯ 𝑎 or 𝑎 ⪯ 𝑎. Some elements may be completed unrelated, neither
preceding nor succeeding each other. (Not surprisingly, an order that is not
partial is called a total order.)

Question: is it possible for a partial order to contain a “loop”? That is,
can we have a situation 𝑎 ⪯ 𝑎 ⪯ … ⪯ 𝑎𝑛 ⪯ 𝑎? In fact, the answer is no;
although proving this rigarously is leಏ as an exercise for the reader, the intuitive
explanation is that the transitive property will “collapse” the loop so that 𝑎 =
𝑎 = … = 𝑎𝑛. This loop-ಎee property makes partial orders very useful in
algorithms; we can always follow the relation without worrying about getting
stuck in a loop.

The converse of a partial order is also a partial order. To prove this, we
simply look at the above results which show that the converse preserves each of
the three required properties. This implies that we can take any partial order
and construct the converse partial order which “goes the other way”.

Least and greatest elements: Sometimes a partial order will have a (unique)
element that is ⪯ every element, or an element that is ⪰ every other element.
If these exist (and they need not both exist) they are referred to as the least
and greatest elements according to the order. Note that the least and greatest
elements are defined by the combination of the partial order and the set it is
defined on. It makes no sense to ask for the least/greatest element of a set
without also speci௫ing the partial order.
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Logically, we can define the presence of the least/greatest elements as

∃𝑎 ∶ ∀𝑎 ∈ 𝐴 ∶ 𝑎 ⪯ 𝑎 (Least)
∃𝑎 ∶ ∀𝑎 ∶ 𝑎 ⪯ 𝑎 (Greatest)

If they exist, the least/greatest elements are guaranteed to be unique: i.e.,
if 𝑎 and 𝑎 are both least elements, then 𝑎 = 𝑎. A partial order which has Can you prove this?
both least and greatest elements is called a bounded partial order. This implies
that we can follow the relation, in either direction, and eventually stop (again,
algorithmically, this is a useful property as it implies that an algorithm which
follows the relation will terminate, and not run forever!).

We can similarly define the least and greatest elements of some subset of 𝐴,
𝐴′. These will come in handy when defining least-upper- and greatest-lower-
bounds, so we will define the functions:

least ∶ (𝒫(𝐴) ⧵∅) → 𝐴

greatest ∶ (𝒫(𝐴) ⧵∅) → 𝐴

to give us the least/greatest element of any non-empty subset of 𝐴.

Least-upper- and Greatest-lower-bounds: Given two elements 𝑎 and 𝑐, not
necessarily ordered with respect to each other, we can ask whether there exists a
𝑏 such that 𝑏 ⪯ 𝑎 and 𝑏 ⪯ 𝑐. If this is the case then 𝑏 is called a lower bound of 𝑎
and 𝑐. Similarly, if 𝑎 ⪯ 𝑏 and 𝑐 ⪯ 𝑏 then 𝑏 is an upper bound of 𝑎 and 𝑐.

Two elements may have more than one upper or lower bound. For example,
in the total order ≤∶ ℕ we have 1 ≤ 3, 1 ≤ 4 but also 2 ≤ 3, 2 ≤ 4. Thus both
1 and 2 are lower bounds for 3 and 4. We will define the functions lb ∶ 𝐴 →
𝒫(𝐴) and ub ∶ 𝐴 → 𝒫(𝐴) to give us the complete sets of lower/upper bounds
for any pair of elements:

lb(𝑎, 𝑐) = {𝑏 ∣ 𝑏 ⪯ 𝑎 ∧ 𝑏 ⪯ 𝑐}
ub(𝑎, 𝑐) = {𝑏 ∣ 𝑎 ⪯ 𝑏 ∧ 𝑐 ⪯ 𝑏}

Note that for a given 𝑎, 𝑐 it is possible for lb(𝑎, 𝑐) = ∅ or ub(𝑎, 𝑐) = ∅ or both.
We are now in a position to find the least upper and greatest lower bounds

of a pair of elements. Intutively, the least upper bound is the “smallest” upper
bound, the element which is closest to the original two. Similarly, the greatest
lower bound is the “largest” (again, closest) of all the lower bounds. To find



௱ఀ௹௯௬௸௰௹௬௷ ௺௱ ௮௺௸ఀ௰ ௮௴௰௹௮௰ — ௷௰௮ఀ௰ ௹௺௰ 83

them, we simply compose the lb/ub functions with the least/greatest functions:

lub ∶ 𝐴 → 𝐴

lub(𝑎, 𝑐) = least(ub(𝑎, 𝑐))
glb ∶ 𝐴 → 𝐴

glb(𝑎, 𝑐) = greatest(lb(𝑎, 𝑐))

Note that if ub(𝑎, 𝑐) = ∅ then the least upper bound is not defined, and simi-
larly for the greatest lower bound.

We can extend lb and ub to work on sets rather than pairs of elements. This
allows us to ask for the least/greatest upper/lower bound of a set of elements.
However, this extension does not add any new properties, and constructing it is
leಏ as an exercise for the reader.

A partial order over a set in which every pair of elements has both a least-
upper and greatest-lower bound is called a lattice (and if it also has least and
greatest elements, then a bounded lattice).

Well-orders: A set with a partial order is well-ordered if every non-empty
subset has a least element by the order. This is stronger than a partial order
(which does not require least elements at all) but weaker than a lattice

A well-ordered set has the useful property that every element except the
greatest element, if it exists, has a successor. We define succ(𝑛) as

succ(𝑛) = least({𝑛′ ∣ 𝑛 ≺ 𝑛′})

I.e., the successor is the least element of the subset consisting of everything Here, 𝑎 ≺ 𝑏 means 𝑎 ⪯ 𝑏 ∧ 𝑎 ≠ 𝑏.
greater than 𝑛.

Other Topics

Type Theory

Type theory is concerned with the properties of types and the expressions and
computations which they categorize. It should be noted in particular that in
type theory, a type can be abstractly defined as any interesting property of a
computation that can be extracted ಎom a static description of that computation.
I.e., types are everything that you can find out at compile-time; run-time is
concerned with values.

As an example of a type theory, consider the problem of classi௫ing the types
of expressions in a simple programming language consisting of

• Integer literals 0,1, etc.

• String literals "string"

• The arithmetic operators + and *
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• The string concatenation operator ++

• The function show which converts a integer expression to a string.

• The function len which finds the length of a string expression, as an integer.

We give inference rules which define the judgment e :: 𝜏 meaning that 𝑒
has type 𝜏. We use the familar Haskell notation ::, but

bear in mind that literature on type theory
will typically use a single colon 𝑒 ∶ 𝜏.

Int
𝑛 ∈ ℤ
𝑛 ∶∶ Int Str

" … " ∶∶ String

Add
𝑒 ∶∶ Int 𝑒 ∶∶ Int

𝑒 + 𝑒 ∶∶ Int
Mul

𝑒 ∶∶ Int 𝑒 ∶∶ Int
𝑒 ∗ 𝑒 ∶∶ Int

Cat
𝑒 ∶∶ String 𝑒 ∶∶ String

𝑒 ++ 𝑒 ∶∶ String

Show
𝑒 ∶∶ Int

show(𝑒) ∶∶ String
Len

𝑒 ∶∶ String
len(𝑒) ∶∶ Int

Given this theory, we can ask whether a given expression has a type, and if
so, what type it is, by constructing a derivation:

(details to follow)
Let us make our theory a bit more interesting. Suppose we want to add a

let-in construct to allow local name binding. Its syntax will be let 𝑛 = 𝑒 in 𝑒′,
where the name 𝑛 can be used (and is bound to 𝑒) within 𝑒′. Although we can
infer the type of 𝑒 ∶∶ 𝜏, how can we determine the type of 𝑒′? We need some
way of keeping track, within 𝑒′ of the fact that 𝑛 ∶∶ 𝜏. In fact, we will reuse the
contexts and hypothetical judgements of proof theory: Γ ⊢ 𝑒 ∶∶ 𝜏 is a judgment
stating that if the typing judgments in Γ are assumed, then 𝑒 will have type
𝜏. Similarly, the “contents” of Γ will be typing judgments. We augment all of
our original rules to take this into account, and then add an addiitonal rule for
let-in:

Var
Γ, 𝑣 ∶∶ 𝜏 ⊢ 𝑣 ∶∶ 𝜏

Int
𝑛 ∈ ℤ

Γ ⊢ 𝑛 ∶∶ Int
Str

Γ ⊢ "… " ∶∶ String

Add
Γ ⊢ 𝑒 ∶∶ Int Γ ⊢ 𝑒 ∶∶ Int

Γ ⊢ 𝑒 + 𝑒 ∶∶ Int
Mul

Γ ⊢ 𝑒 ∶∶ Int Γ ⊢ 𝑒 ∶∶ Int
Γ ⊢ 𝑒 ∗ 𝑒 ∶∶ Int

Cat
Γ ⊢ 𝑒 ∶∶ String Γ ⊢ 𝑒 ∶∶ String

Γ ⊢ 𝑒 ++ 𝑒 ∶∶ String

Show
Γ ⊢ 𝑒 ∶∶ Int

Γ ⊢ show(𝑒) ∶∶ String
Len

Γ ⊢ 𝑒 ∶∶ String
Γ ⊢ len(𝑒) ∶∶ Int

Let (𝑣 is ಎee in 𝑒′)
Γ ⊢ 𝑒 ∶∶ 𝜏 Γ, 𝑣 ∶∶ 𝜏 ⊢ 𝑒′ ∶∶ 𝜏′

Γ ⊢ (let 𝑣 = 𝑒 in 𝑒′) ∶∶ 𝜏′
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Our new Var rule allows us to use any of the assumed types in Γ to make a
typing judgment about a variable. Our new Let rule lets us add such assump-
tions to the context, but scoped within the “body” of the let; the part aಏer in.
You should read the Let-rule as “if 𝑒 has type 𝜏 in Γ, and assuming that 𝑣 has
type 𝜏 leads to 𝑒′ having type 𝜏′, then we can conclude that let 𝑣 = 𝑒 in 𝑒′ has
type 𝜏′”. Just as, at run-time, the value of 𝑒 will be substituted into 𝑒′ in place
of the variable 𝑣, here, at type-checking type, we substitute the type of 𝑒 into
the type of 𝑒′, whenever we would need the type of 𝑣.

As above, we can construct typing derivations to veri௫ the type of an expres-
sion:

(details to follow)

Abstract Algebra

Category Theory

Category theory can be viewed as “object-oriented mathematics”. What we
mean by that is that, while traditional mathematics is very concerned with how
structures are built, and their behavior is derived ಎom the structure, category
theory seeks to describe concepts purely in terms of behavior, with minimal
reference to how things “look inside”. Thus, it can be viewed as analogous to
the object-oriented goal of building soಏware purely around opaque interfaces;
we don’t need to know how a class works internally, we just need to know how
we can interact with it.

To make this rather vague definition more concrete, we will look at onto and
one-to-one functions, with the goal of building up definitions for “onto” and
“one-to-one” that never mentions the elements of the sets involved. I am indebted to M.A. Arbib and E.G.

Manes’ Arrows, Structures, and Functors:
The Categorial Imperative for this style of
introduction.

Recall that the definition of an onto function is one whose image under its
domain is its range:

𝑓 ∶ 𝐴 → 𝐵 is onto iff 𝑓(𝐴) = 𝐵

A more explicit definition would be

∀𝑏 ∈ 𝐵 ∶ ∃𝑎 ∈ 𝐴 ∶ 𝑓(𝑎) = 𝑏

Suppose 𝑓 ∶ 𝐴 → 𝐵 is onto, and suppose that we have two other functions
𝑔, ℎ ∶ 𝐵 → 𝐶, and finally, suppose it is the case that

∀𝑎 ∈ 𝐴 ∶ 𝑔(𝑓(𝑎)) = ℎ(𝑓(𝑎))

Because 𝑓 is onto, this implies that we are “testing” the equality of 𝑔 and ℎ on
every 𝑏:

∀𝑏 ∈ 𝐵 ∶ 𝑔(𝑏) = ℎ(𝑏)

But if this is the case, and 𝑔 and ℎ produce identical results for all inputs ಎom
their mutual domain, we can just say 𝑔 = ℎ because they are indistinguishable.

What happens if we try this with a 𝑓′ that is not onto? In that case ∃𝑏 ∈ 𝐵 ∶
¬∃𝑎 ∈ 𝐴 ∶ 𝑓′(𝑎) = 𝑏; i.e., there are at least some 𝑏’s ∈ 𝐵 that will not be produced
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by 𝑓′ as output. This means that when we say that ∀𝑎 ∈ 𝐴 ∶ 𝑔(𝑓′(𝑎)) = ℎ(𝑓′(𝑎))
we are no longer “testing” 𝑔 and ℎ on all possible inputs, and so we cannot
conclude 𝑔 = ℎ. Thus, another way of stating that 𝑓 is onto is

(∀𝑎 ∈ 𝐴 ∶ 𝑔(𝑓(𝑎)) = ℎ(𝑓(𝑎))) ⇒ 𝑔 = ℎ

How can we describe this property without ever refering to the elements of
𝐴 and 𝐵? We will exploit the behavior of onto functions under composition with
other functions. Again, function composition is defined as

𝑓 ∶ 𝐵 → 𝐶

𝑔 ∶ 𝐴 → 𝐵

(𝑓 ⋅ 𝑔) ∶ 𝐴 → 𝐶

(𝑓 ⋅ 𝑔)(𝑥) = 𝑓(𝑔(𝑥))

So we will rewrite the above definition as simply

𝑓 is onto iff 𝑔 ⋅ 𝑓 = ℎ ⋅ 𝑓 ⇒ 𝑔 = ℎ

Notice how this definition makes no reference to the elements of 𝐴 or 𝐵, or
even to the domains/ranges of the functions. And yet this definition will work
just as well as the element-centric one.

What about one-to-one functions? Taking a guess, is it the case that

𝑓 is onto iff 𝑓 ⋅ 𝑔 = 𝑓 ⋅ ℎ ⇒ 𝑔 = ℎ

In fact, the answer is Yes, as we will demonstrate. Recall that 𝑓 ∶ 𝐵 → 𝐴 being
one-to-one implies that

𝑏 ≠ 𝑏 ⇒ 𝑓(𝑏) ≠ 𝑓(𝑏)

Again, suppose we have 𝑔, ℎ ∶ 𝐶 → 𝐵 such that

∀𝑐 ∈ 𝐶 ∶ 𝑓(𝑔(𝑐)) = 𝑓(ℎ(𝑐))

Then we can conclude, based purely on 𝑓 being one-to-one, that 𝑔 = ℎ. How?
Suppose 𝑔 ≠ ℎ; then there must be some 𝑐 such that 𝑔(𝑐) ≠ ℎ(𝑐). But if that
were the case, then 𝑓(𝑔(𝑐)) ≠ 𝑓(ℎ(𝑐)) if 𝑓 is one-to-one. So 𝑓 being one-to-one
forces the results of 𝑔 and ℎ to be identical.

Again, by using function composition, we can rewrite

∀𝑐 ∈ 𝐶 ∶ 𝑓(𝑔(𝑐)) = 𝑓(ℎ(𝑐)) ⇒ 𝑔 = ℎ

to
𝑓 is one-to-one iff 𝑓 ⋅ 𝑔 = 𝑓 ⋅ ℎ ⇒ 𝑔 = ℎ

The fact that the principle behind onto turns
into something different, but still valid, when
we “do it backwards” is a central result of
category theory: every valid principle has a
dual that can be found by simply swapping all
the domains and codomains.

This development demonstrates the general idea behind category theory:
to describe the behavior of function-like mappings based purely on how they
interact with each other, without any reference to what they “do” internally.
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Categories, objects and morphisms

The category Hask

One use for category theory is in providing a semantics for type theory. Here,
we will look at the category Hask. The objects of Hask are the types in Haskell,
while the morphisms are the functions between those types.
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