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As the major concerns of computer science are computation and the nature and
variety of the machines that support it, in all their glorious but unwieldy variety,
a particularly productive strategy in the study of computer science is to focus on
special cases of computations (and machines) that exhibit two opposing qualities:
they are special enough to make a detailed study feasible, yet they are general
enough to provide useful insight into many broader questions. In the whole
of computer science, there is no better example of a subject that meets these
two requirements than the one involving Finite State Machines and Regular
Languages.

These notes present the standard definitions, techniques, and results of this
subject, although in occasionally new ways. They are currently in draಏ form and
contain parts in various stages of completion, ಎom bare outlines to polished text,
so please do not distribute them without permission of the author.

Introduction

Suppose we are given a string of characters, say twilson@csufresno.edu, and
need to determine whether this string represents a valid email address. Or we
are given a string and need to determine whether it represents a valid date, or
zip code, or system log entry, or programming-language statement. These are
all examples of string recognition problems, and these problems form the context
of our study.

What do we mean by “valid”? Clearly we must have some definition in mind
of what strings are, and hence, are not, part of the class we are interested in. At
the most basic level, we need to know what characters or, more generally, what
symbols are allowed in our strings. We refer to the set of all valid symbols as the
alphabet and write it Σ. For example, for email addresses Σ includes not just
alphanumeric characters, but also . @ and any other characters allowed in email
addresses. See RFC … for all the gruesome details on

what characters are permissible in email
addresses.

Sometimes we need to refer to the set of all strings, of any length ≥ 0 over
an alphabet. We write this as Σ ∗.

A language is some subset of Σ ∗ containing only the strings we are interested
in. For example, the language 𝐿email contains only the valid email addresses.
Formally speaking, a language is a possibly-infinite set of strings, but as we

twilson@csufresno.edu
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will see, you can also think of a language as a mechanism for either recognizing
strings in that set, or for generating all strings in that set.

Again, suppose we are interested in the language 𝐿email. How can we de-
scribe what constitutes a valid email address? By looking at the above example
twilson@csufresno.edu, we can see that an email consists some user identifier,
follow by an @-sign, follow by a hostname. We can formalize this by giving it as
a grammar 𝐺email:

𝑒𝑚𝑎𝑖𝑙 → 𝑢𝑠𝑒𝑟 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟@ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒

𝑢𝑠𝑒𝑟 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 → …

ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒 → …

(Obviously, we still need to fill in the definitions of 𝑢𝑠𝑒𝑟 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 and
ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒.)

Formally speaking, a grammar is a four-tuple (𝑉, Σ, 𝑃, 𝑆) where 𝑉 is a fi-
nite set of non-terminals (e.g., 𝑒𝑚𝑎𝑖𝑙, ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒), Σ is the alphabet, the set of
terminals, 𝑃 ⊂ 𝑉 × (𝑉 ∪ Σ)∗ is a finite set of rules, and 𝑆 ∈ 𝑉 is the start symbol. This definition actually describes context-঑ee

grammars, those in which the leಏ-hand-
side of every rule is restricted to a single
nonterminal. There are grammars, which we
will consider later, in which this restriction
does not hold; e.g., a𝐵c → abc is a valid, but
not context-ಎee, rule.

Informally, a grammar is defined by its rules, and the nonterminals and
terminals that occur in it (the above definition allows for grammars to have
nonterminals and terminals that are never used by the rules, but since these
have no effect, we can safely ignore them). Every rule describes the structure of
a particular nonterminal, as a sequence of nonterminals and/or terminals. Note
that it is valid for this sequence to be empty! A rule 𝐴 → 𝜀 indicates that the
definition of 𝐴 is empty, and is refered to as an epsilon rule. Also note that there
is no restriction requiring each nonterminal to have a single defining rule. For
example, this is a perfectly valid grammar:

𝐴 → a

𝐴 → b

This expresses the fact that the nonterminal 𝐴 can recognize or match either
a literal a or a literal b.

When presenting grammars, we will normally assume that the first rule is
the start rule.

String recognition with a grammar

Here we informally build up a sketch of an algorithm for doing string recog-
nition using a grammar. Consider, again, the example of an email address. We
want to use the grammar 𝐺email to determine whether "twilson@csufresno.edu"
is a valid email address.

⒈ We begin with the start rule 𝑒𝑚𝑎𝑖𝑙. Its definition tells us that a valid email
address consists of a 𝑢𝑠𝑒𝑟 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 followed by a literal @ followed by a
ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒.
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⒉ So we recursively ask whether 𝑢𝑠𝑒𝑟 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 matches some prefix of "twil-
son@csufresno.edu". Presumably (hopefully!) it matches twilson, leaving
the remainder of the string as @csufresno.edu.

⒊ We now ask whether the literal @ matches some prefix of @csufresno.edu; it
does, with the remainder of the string now being csufresno.edu.

⒋ We recursively ask whether ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒 matches a prefix of csufresno.edu. It
does, and all that’s leಏ is the empty string 𝜀.

⒌ Since the start rule accepted the string given, and since there’s nothing leಏ
of the string, the string is accepted as a valid email address.

Note that both the final conditions are important: the entire definition of
the start rule must have been successful (e.g., if the input string was twil-
son|csufresno.edu the @ would have failed to match), and there must be noth-
ing leಏ of the string when we are finished.

Above we assumed that the definition of a rule could be followed ಎom leಏ
to right, but this is not required. It’s not hard to construct grammars for which
this method will result in an infinite loop:

𝐴 → 𝐴a

𝐴 → 𝜀

More on derivations…

Preliminaries – Haskell Review

Syntax

Comments in Haskell take two forms:

• Single-line comments (similar to //-style comments in C/C++/Java) start
with -- and extend to the end of the line. E.g.,

-- This comment extends to the end of the line.

Note that in Haskell you can define your own operators, and it is perfectly
acceptable to define an operator that starts with --, as long as it continues
with some other operator-like character. E.g., we could define

(-->) :: Int -> Int -> Int
a --> b = a*a + b*b

Some editors, however, will not be aware of this and may show everything
aಏer the start of the --> as a comment.
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• Multi-line comments (similar to /* ... */) start with {- and end with -}.
Note that multi-line comments can nest, unlike in C/C++/Java. E.g., this is
perfectly valid:

{-
This is commented out
{- So is this -}
This is still commented out

-}

Identifiers (functions, variables, types, etc.) are subject to a few rules regard-
ing their names:

• Variable and function names must start with a lowercase letter, but may be
followed by upper- and lower-case letters, numbers, underscores, or the
apostrophe. The latter is commonly used to show that one variable is a
slightly different version of another. E.g.,

if a == a' then ...

The exception to this rule are operator-style functions, which, as shown
above, have to start with some kind of symbol character (-, *, etc.).

• Identifiers starting with uppercase letters are reserved for module names,
types, type classes, and type constructors.
Note that this conflicts with our usual mathematical custom of writing the
names of sets in uppercase. Usually we will get around this by writing sets or
lists with a plural ‘s’ at the end. E.g., the set A will become as (“more than
one a”). Bear this in mind when translating math into Haskell; you’ll have to
do some renaming, so be consistent about it.

• The two type constructors you will probably see most ಎequently are True
and False, both of type Bool. These are, as you might expect, the boolean
constants. Note that they must start with uppercase T and F! If you write
true by accident you will get an undefined identifier error.

Literal values:

• Integer and floating-point values look like you’d expect:

1
105
0.5
-12.4

But note that there is an unfortunate ambiguity with the unary minus, so
oಏen it’s safer to write (-12.4) with explicit parentheses.
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• Character literals are enclosed in single-quotes (forward quotes; backquotes
do something different):

'a'
'b'

Note that Haskell supports Unicode, so you can use fancy characters if you
want.

• String literals are enclosed in double-quotes:

"Hello, world!\n"

As shown, the usual backslash escapes for special characters are supported.
In Haskell, strings are just lists of characters (i.e., of type [Char]), so techni-
cally a string literal is just another form of a list.

• List literals have two forms, explained in detail below, in the section on lists.
Some examples:

[1,2,3,4]
1:2:3:4:[] -- Same as the previous
1:(2:(3:(4:[]))) -- Also the same
1:2:[3,4] -- Still the same

• Tuples consists of multiple values, of possibly different types, in parentheses.
Tuples are explained more fully below, but here are some examples:

(1,"hello") -- A "pair" of type (Int, [Char])
(3.14,[True,False],"potato") -- A "triple" of type (Float, [Bool], [Char])

• Function values are explained in detail below, but they begin with a back-
slash, followed by arguments, followed by ->, followed by the body:

(\x -> x) -- The identity function
(\v -> v+1) -- The successor function
(\x y -> x + y) -- This is the same as the function (+)

Any function can be treated as an infix operator, and any infix operator can
be treated as a function, as you find it convenient:

• If f is a function of two arguments then

f a b

is exactly the same as writing
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a `f` b

• If + is any infix operator, then

a + b

is exactly the same as writing

(+) a b

This is mostly useful in situations not where you are calling (+) as a func-
tion, but where you are storing it in a variable, or passing it as an argument
(see the section on “First Class Functions” below for examples).

Layout: Indentation is significant in Haskell, meaning that it affects the
meaning of your code. Generally speaking, if a line is indented more than the
previous line, then it is treated as being part of a new block (this is similar to
the layout rule in Python). The block ends with the next line that is unin-
dented (indented less than its parent). An example:

f x = x + 1
g y = y * 2

This would not work if we wrote it as

f x = x + 1
g y = y * 2

because now the definition of g appears to be nested inside that of f, some-
how. This is actually a common problem, where the definitions are separated by
enough space to make the extra indentation less noticable. Always check your
definitions to make sure they are flush leಏ!

If you find the layout-based structure problematic, Haskell also has an
explicit block syntax that should be more familiar:

let {
x = 1;
y = 2;
} in
x + y

(Note that the expression following the in must still be indented, or you
could put it on the same line as the in.)

The only places where layout really matters are:

• Aಏer let but before in
• Aಏer of (i.e., aಏer case ... of)
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• Aಏer where

Thus, these are the only situations where the block syntax will really help.
Some additional examples of block syntax:

case x of {
1 -> "Hello";
2 -> "Goodbye";
}

f x = x + y + z
where {

y = 4;
z = 2;
}

(The crazy indentation is just to show that it doesn’t matter in a block; in
reality you should try to make your code readable.)

Note that you can use a semicolon anywhere where a newline would nor-
mally occur. E.g., you can put multiple definitions on a single line if you like:

x = 1; y = 2; z = 3;

Haskell File Structure

A Haskell file typically has the extension .hs. A Haskell file can optionally
begin with some module imports, followed by definitions. (Note that, as in Java,
any module imports must appear before all definitions; you cannot mix and
match imports and definitions throughout the file.) A module import looks like
this

import Data.List

Haskell uses a hierarchical module structure: here we are importing the List
module, which is nested inside the Data module. An unqualified import will
load in every definition provided by the file. We can quali௫ the import if we
only want to load in specific definitions:

import Data.List (permutations, subsequences)

This will only import the two functions permutations and subsequences.
Definitions in Haskell have the (very) general form of some identifier, op-

tionally some argument pattern⒮, a literal =, and then the body of the defini-
tion. For example,

x = 10
f x = x + 2
first_two (x1:x2:xs) = x1 + x2
squared_dist a b = a^2 + b^2
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A definition can optionally be preceded by a type declaration. This consists
of the name of the definition, followed by ::, followed by a type:

x :: Int
x = 10

f :: Integer -> Integer
f x = x + 2

first_two :: [Int] -> Int
first_two (x1:x2:xs) = x1 + x2

squared_dist :: Num a => a -> a -> a
squared_dist a b = a^2 + b^2

If the type is omitted, Haskell will figure it out for you. But if you give
a type, Haskell will still figure out the type, and then check it against the
type you gave. This is a good way of “checking your work”; if you and Haskell
disagree about the types, probably something went wrong someplace.

The forms that a definition can take are quite varied:

• A single definition can have multiple clauses, each matching a different
pattern. We’ve already seen this in recursive list functions: we have a clause
for the empty list, and then another clause for the cons. Haskell will try to
match the actual argument⒮ against the clauses’ patterns in the order they
are given; the first one to match is used.

• A single clause of a definition can have guards. Guards allow a single clause
to be split into multiple cases, with the case chosen depending on some
boolean conditions. For example, here is a function which clamps the value
of its first argument to be >= its second and <= its third:

clamp :: Int -> Int -> Int -> Int
clamp x a b | x <= a = a

| x >= b = b
| otherwise = x

otherwise is just a synonym for True, acting as an “else” case. If none of the
guards succeed, then the entire clause is treated as a failed pattern match.

• A clause can have local definitions via where:

f x = x + x2 - z
where

x2 = 2 * x
z = 12
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These local definitions are full definitions in their own right: they can have
types, multiple clauses, guards, even nested wheres! The only difference is
that definitions in a where are only visible within the body of their attached
definition (e.g., above, you cannot refer to x2 and z anywhere but in the
definition of f ).

• If Haskell gets to the end of the list of clauses and none of them has
matched, then it will throw an “inexhaustive match” error.

Patterns

Patterns are what follow the name of a definition on the leಏ-hand side. Al-
though simple argument patterns like

f x y = ...

are not too hard to understand (f takes two arguments, named x and y
within its body), argument patterns can in fact be quite complex and expressive.
(Note that for functions with multiple arguments, each argument gets its own
pattern.) The forms of patterns are:

• A variable, e.g., f x y as above. A variable matches anything, and will result
in the matched value being bound to the name of the variable, within the
body of the definition.

• The wildcard variable _. _ matches anything, but does not bind any name to
the value. You can use this for arguments that you don’t care about; e.g., in
our length function, we did not use the value of x in the cons case, so we
could have written it as

mylen (_:xs) = 1 + mylen xs

• A literal value, which must match exactly, and does not bind any names.
E.g., in the factorial function, the base case is

fact 1 = 1

This clause will only match if the actual argument is ⒈

• A data constructor. We’ve already seen one of these, the cons constructor:

mylen (x:xs) = ...

This will match the non-empty list case, and will also split the list into its
head and tail, and bind x to the head and xs to the tail. This can be done
with any data constructor, including those for data types you create yourself:
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data NameOrNumber = Name String | Number Int

isName :: NameOrNumber -> Bool
isName (Name _) = True
isName (Number _) = False

Data constructors can also contain nested patterns. As shown above, we can
use _ within a constructor. You can even next data constructors within data
constructors:

addFirstTwo :: [Int] -> Int
addFirstTwo (x1:(x2:_)) = x1 + x2

Remember that [a,b,c] is just shorthand for a:b:c:[] (which in turn is
equivalent to a:(b:(c:[]))), so you can use patterns of the form [a,b,c,...]
to match a list of specific length. (And again, the elements of this list pat-
tern could themselves be nested patterns!)

• An “as” pattern. Sometimes you want to break up a data constructor (e.g.,
extract the head and tail of a list) but also have access to the complete origi-
nal value. An @ pattern does just this:

f l@(x:xs) = ...

Here, x and xs will be bound to the head and tail as usual, but l will also be
bound to the entire original list.

Expressions

While Haskell files consist of definitions, the body of every definition must be
an expression. Hence the structure of expressions is very important. (Note that
when we talk about “builtin” operators and functions, we are actually refering
to the set of operators/functions defined in the Haskell Prelude. The Prelude is
a special module that is automatically imported by every Haskell file; it is also
automatically available in GHCi.)

Operators: Haskell supports the usual collection of arithmetic operators:

+ - * / ^

These are defined on all “numeric” types (i.e., types implementing the Num
typeclass; see below for a description of what typeclasses are).

Comparison operators are similarly available:

> < >= <= == /=
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The ordering operators (less-than, etc.) are defined on types implementing
Ord, while the (in)equality operators are defined on types implementing Eq.
(Note that all numeric and character types implement both of these; structured
types like lists and products also implement == and !=.) All of these return a
Bool result.

Two other pseudo-comparison functions are min and max. These do what
you’d expect, returning the minimum/maximum of their two arguments (which
must be Ord-erable).

Built-in boolean operators are as you would expect:

&& || not

Note that not is just a normal one-argument function, not a special operator.
All of these take Bool arguments, and return a Bool as well.

Signalling errors: If something does not make any sense whatsoever, you can
throw an error: error is a built-in function of type String -> a. Note that
it’s return type is a, completely unspecified. This means that you can use error
anywhere, in any type of expression. As soon as it is evaluated, the error will
print the String you give it and then abort your program. E.g.,

x = 1 + error "Whoops!"

Evaluating x will cause the error to be thrown.
The other magical error value is undefined. We use this in labs to signal

parts of the file which you are supposed to fill in. undefined has type a, so you
can use it anywhere, but like error, attempting to evaluate it will abort your
program and print an error message.

Control Structures

In a language like C/C++/Java, control structures are procedural in nature:
they affect the order in which things happen. In Haskell, control structures are
expressions: they return values.

if-then-else:

if x == 12 then "Hello" else "Goodbye"

The general form is

if condition then
true_expression

else
false_expression

The condition must be of type Bool, and both the true_expression and the
false_expression must be of the same type. Note that if-then-else is “lazy”:
only one of true_expression and false_expression will be evaluated; the
unused branch is not evaluated.

Note that since if-then-else is an expression you can do things like
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12 + (if odd x then 1 else 2) * y

case:

case x of
12 -> "Hello"
_ -> "Goodbye"

(This has exactly the same effect as the example if-then-else above.) case is
roughly Haskell’s equivalent to switch in C/C++/Java. It solves the problem of
nested if ’s becoming cumbersome, by allowing multiple branches. All of the
patterns (to the leಏ of the ->) must have the same type, the type of x, and all of
the return values (to the right of ->) must have the same type.

Note that the “conditions” on each branch (12 and _ above) can actually be
arbitrary patterns, so you can do something like

case l of
[] -> 0
(x:_) -> x

If you want to write a case on a single line, you’ll have to use semicolons to
separate the cases:

case x of 12 -> "Hello" ; _ -> "Goodbye"

As with if-then-else, case is an expression and can be used anywhere where
a value or expression is needed:

1 + (case x of 'A' -> 0 ; 'B' -> 1 ) * z

let-in:
let..in is Haskell’s version of local variable definitions, but with a significant

twist. let lets you bind some names to some expressions (and do pattern-
matching in the process, if you like), and thus is useful for either labeling some
values according to their function, or abstracting out repeated calculations for
efficiency:

let x = huge_calculation in x*x + x

Rather than perform the huge_calculation three times, we perform it
once, call the result x, and then compute x*x + x (which would otherwise
require three evaluations of huge_calculation). But again, let..in is still an
expression, so you can do things like

x * (let x' = x + 12 in x*y) + z

let..in can bind more than one name:
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let x = 12
y = length "Potato"
z = [1..]

in
x + y + head z

Later names can refer to earlier ones:

let x = 12
y = x + 1
z = y ^ 2

in
x + y + z

You can even use let..in to bind functions locally:

let f x = x^2
in

f 5

Lists

Lists are so useful in Haskell that they have a number of different forms. The
“cons” form of a list looks like this:

1:2:3:4:[]

Note that because the : operator associates to the right, this is equivalent to

1:(2:(3:(4:[])))

If you want to put a single element on the ಎont of a list, you can “cons” it
on:

1 : [2,3,4]

(try typing this into GHCi!) evaluates to

[1,2,3,4]

If you want to treat a list like a stack, then this is your “push” operation.
A lot of times we want to construct a list ಎom a range of values. For exam-

ple, [1,2,3,4] is the list of Int values between 1 and 4 (inclusive). We can write
this more succintly as just

[1..4]

This will work with any element type that supports Enum. For example:

['a'..'h']
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gives

"abcdefgh"

We can vary the “step” if we like:

[1,3..10]

gives

[1,3,5,7,9]

Note that if you want to count “down”, you must provide a decreasing step:

[4..1]

gives

[]

What you really want is

[4,3..1]

We can even use this to construct infinite lists:

[1..]

gives the (infinite) list

[1,2,3,4,...]

Similarly,

[1,1..]

gives the infinite list of 1s:

[1,1,1,1...]

(A better way to construct an infinite list of a single value is to use repeat:

repeat 1

gives

[1,1,1,1...]

The difference is that [a,a..] requires the type of a to support Enum, while
repeat can be used to repeat values of any type.)

Sometimes we want to build a list out of another list, by applying some
operation to its elements. For example suppose we want the list of the squares
of the integers ಎom 1 to ⒋ I.e., we want to take [1..4] and ಎom it square each
element, producing [1,4,9,16]. We can do this with a list comprehension:
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[x^2 | x <- [1..4]]

The leಏ-hand side (to the leಏ of the vertical bar) is the expression that is
used to compute the elements of the new list. The right-hand side specifies
where the original elements come ಎom. So here, x will be bound to an element
of [1..4], xˆ2 will be computed, and the result saved in the corresponding
position of the output list.

If we want, we can filter the values according to some criteria:

[x^2 | x <- [1..10], even x]

This will give the squares of only the even numbers between 1 and ⒑ But
note that Haskell will keep “running” the list comprehension as long as the list
generating x produces values. E.g., you might think you could do something
like this:

[x^2 | x <- [1,2..], x <= 10]

and the list would stop aಏer x == 10, but in fact it will run forever. Haskell
doesn’t know that, aಏer x == 10, there won’t, eventually, be another x that is <=
10, so it keeps on trying. Running forever makes Haskell sad; do you want to
make Haskell sad?

You can also “drive” a list comprehension with more than one generator list:

[x+y | x <- [1,2], y <- [10,20]]

gives

[11,21,12,22]

(Can you see why?) You can think of this as a generalization of the notion of
a “cross product” over all the input lists. Strangely enough, you can even “drive”
a list comprehension with no generators:

[x | x < 10]

In this case, x must already be defined. If the condition is True, this will
evaluate to [x]; if it is False it will evaluate to []. Sometimes it may be useful to
construct a zero-or-one element list, based on some condition; this is an easy
way to do just that.

“Collapsing” lists: oಏen we will want to take a list and collapse it down to a
single value. For example, we might want to find the sum or product of a list of
numbers, or maybe, given a list of Bools, determine whether they are all True.
Haskell has a number of “aggregate” functions that do things like this:

• sum – Sums the elements of the list

• product – Finds the product of the elements of the list
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• maximum – Returns the largest element of the list

• minimum – Returns the smallest element of the list

• and – Returns True if every element of the input list is True (i.e., it &&s all
the elements of the input list together).

• or – Returns True if any element of the input list is True (i.e., it ||s all the
elements together)

Product Types

We mentioned tuples above and showed have they have a type built ಎom ,; the
, type is called a product type. A product type can be thought of as somewhat
like a struct in C/C++: it aggregates together multiple values of different types,
but the overall structure (the component types, their number, and order) is fixed
at compile time. A product type is like a struct in which the elements are
unnamed, they just have their relative ordering:

(1,"Hello") -- A value of product type (Int,String)

Tuples are useful when you want to pass around multiple values as if they
were a single object. For example, you can use a tuple to return two values ಎom
a function:

minMax :: [Int] -> (Int, Int)
minMax l = (minimum l, maximum l)

In the arguments to a function, you can pattern-match against a tuple to
extract the components:

f :: (Int, String) -> Int
f (i,s) = i + length s

Although this looks like a “normal” function in C/C++/Java, do not be
deceived (and don’t write all your functions to take tuples, just because they
look familiar). A tuple is still a single value, so we can do the following:

f x -- Provided that x has a value of type `(Int, String)

But of course, we can also construct the required tuple on-the-fly, ಎom
values of the component types:

f(userid,username)

One useful function that combines tuples and lists is zip:

zip [1,2,3,4] "ABCD" -- Gives [(1,'A'), (2,'B'), (3,'C'), (4,'D')]

This is useful if you want to process two lists in parallel with each other:
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[x+y | (x,y) <- zip [1..4] [4..8]]

(In this case, there is another function, zipWith, that handles the problem
of pairing up elements of two lists and then applying some binary operation to
them. E.g. this is equivalent to the previous:

zipWith (+) [1..4] [4..8]

Note that if one of the lists is longer that the other, then zip will only work
to the end of the shorter lists. This means you can use an infinite list safely:

numberElems :: [a] -> [(a,Int)]
numberElems l = zip l [0..]

There are two builtin functions that operate on pairs:

• fst returns the first element of a pair
• snd returns the second element of a pair

Note that these only work on pairs: for higher-dimensional tuples you will
have to use pattern matching. E.g.,

let (x,y,z) = triple_thing in ...

First-class Functions

Haskell is a functional language, which mostly means that functions exist as val-
ues: they can be stored in variables, passed into and returned out of functions,
and even built-up ಎom other functions. For example, we can do

plusone :: Int -> Int
plusone x = x+1

twice :: (Int -> Int) -> Int -> Int
twice f x = f(f(x)) -- Could also be written as f $ f x

We can now do something like

twice plusone 4

and the result will be 6 (i.e., plusone(plusone(4))).
There are a whole suite of builtin “higher order functions”, functions that,

like twice, take another function as an argument. Some examples:

map plusone [1,2,3,4] -- Gives [2,3,4,5]
filter odd [1..10] -- Gives [1,3,5,7,9]
foldr (+) 0 [1,2,3,4] -- Gives 1+2+3+4+0 = 10
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foldr can be thought of as performing a search-and-replace on a list. E.g.,
in the example above, the input list is 1:2:3:4:[]. : gets replaced with +, while
[] gets replaced with 0.

The (+) syntax for turning an operator into a “normal” function is actual just
a ಎagment of the sectioning syntax that lets you leave off one argument to an
operator and get back a function

(+1) -- Same as the function plusone
(^2) -- The function that squares its argument
(<10) -- Returns True if its argument is less than 10
(0==) -- Returns True if its argument is exactly 0

(But note that (-1) is not the function that decrements its argument, but
just the literal numeric value -⒈ If you want the decrement function, you have
to write (+ (-1)).) The comparison operator sections are useful with filter:

filter (>=0) list_of_numbers -- Keep only the positive values

Currying is an extension of sections to all functions, even those you write.
It means that you can leave off the later arguments of a function, and you’ll get
back a new function. For example, suppose we have

f :: Int -> Float -> String -> Char

(where a,b,c,d are some types). If we call

f 1 3.5 "hello"

we will get back a Char. But if we call

f 1 3.5

we will get back a function, a function that takes a String and “finishes up”,
returning an Int. Similarly, if we leave off ⒊5 we get a function that takes a
Float and a String, and so forth. We can get a feeling for why this works by
looking at the type of the function. In fact, the -> type associates to the right, so
in reality the type is

f :: Int -> (Float -> (String -> Char))

I.e., f takes an Int and returns a function. That function takes a Float and
returns a function. That function (finally!) takes a String and returns a Char.
In reality, all Haskell functions are unary; they take only one argument. But
later arguments will be automatically passed to functions that are returned, so
we can “fake” multiple argument functions. This ability is what lies behind the
otherwise inexplicable function call syntax:

f 1 2.2 "3"

makes more sense if you imagine that the call will actually proceed like

((f 1) 2.2) "3"
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Lazy Evaluation

You may have heard that Haskell is a “lazy” language. As a way of introduction
to what this means, take another look at the syntax for functions:

f x y z = ... -- three arguments
g x y = ... -- two arguments
h x = ... -- one argument

Under Haskell’s syntax, what would a zero-argument function look like?

x = ...

In Haskell, a zero-argument function is indistinguishable ಎom a variable. In
particular, using a variable is semantically equivalent to “calling” a zero argument
function. This means that definitions like this

x = x + 1

are perfectly valid. If you ever “call” x, then your program will go into an
infinite loop, but the definition itself fine, albeit useless.

A more useful zero-argument function is something like this:

x = 1:x

In order to figure out what this means exactly, let’s try to figure out the
type. We know 1 :: Int, and we also know that (:) :: a -> [a] -> [a].
Since the first argument to : is 1, a must be Int, which means that the type of
the second argument (i.e., x) must be [Int]. So we actually have

x :: [Int]
x = 1:x

Let’s evaluate out a couple of terms. Aಏer substituting the definition of x
into its body once we have

x = 1:(1:x)

Do it again and we get

x = 1:(1:(1:x))

In fact, x is the (lazy) infinite list of 1s. Each occurence of x within the ever-
expanding definition will be evaluated lazily; not when it is used, but only when
it is actually needed. This is how we can deal with infinite lists. We can use the
built-in take function to get a ಎagment of the list safely:

take 5 x -- will output [1,1,1,1,1]
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Typeclasses

A Haskell typeclass is roughly akin to an interface in Java, or an abstract base
class in C++. It defines a set of operations, but does not speci௫ how they are
implemented. For example, any type that supports the Eq typeclass supports
both equality (==) and inequality (/=) but the actual implementation of these
operators is leಏ up to the type.

The most useful typeclasses to know about are

• Eq – supports (in)equality
• Ord – supports comparison operators
• Num – supports artithmetic operators (implies support for Eq and Ord as
well)

• Show – supports conversion to String (i.e., for printing)
• Enum – supports enumeration over a range (i.e., we can ask for all the values
of this type between a and b). The list syntax [a..b] requires that the type
of a and b support Enum.

Note that product and list types support Eq, Ord, and Show, provided that
the component types support them. I.e., because Int supports Ord, so does
[Int], so we can do:

[1,2,3] < [3,4,5]

This kind of comparison is done lexicographically; the first two components
are compared, if they are equal then the second two, and so forth. (This is the
kind of comparison you would do when looking a word up in the dictionary.)

In the type of a function, any type classes are shown before a =>:

f :: Eq a => [a] -> Bool
f (x1:x2:_) = x1 == x2

We won’t ask you to write functions with typeclass constraints, however.
Knowledge of typeclasses is mostly useful for when you want to look up a func-
tion; most Haskell functions are polymorphic, so although you might expect to
see a function of type Int -> Int it will probably have a type more like Num a
=> a -> a so that it works on any numeric type.

Preliminaries – Set Theory Review

Here we are interested in the properties of sets. A set is an unordered collection
of objects, all sharing some important property or properties, with an impor-
tant restriction: no duplicates are present in a set. For example, this is a set:

{1, 2, 3, 4}

But this is not: Sets are normally written between curly-
braces.
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{1, 2, 3, 4, 3}

Since writing out the elements of a set is oಏen tedious (for large sets), and
sometimes impossible (for infinite sets), we also use set builder notation:

{𝑥􏷡 ∣ 𝑥 is a prime number }

would give us the set of all squares of primes (i.e., {4, 9, 25, 49, …}).
Some sets are so common that they have special names (we’ve seen some of

these before); these are listed in figure 1.

Set Description

ℕ Natural numbers (i.e., whole numbers ≥ 0)
ℤ Integers
ℚ Rational numbers (ಎactions)
ℝ Real numbers
ℂ Complex numbers

Figure 1: Special sets

Sometimes you’ll see the notation ℤ∗ for
“integers ≥ 􏷟” and ℤ+ for “integers ≥ 􏷠”.
Likewise, ℕ𝑘 is sometimes used for natural
numbers modulo 𝑘, i.e., {􏷟, 􏷠, … , 𝑘 − 􏷠}.

When we need to write a variable for an unknown set, we’ll usually write it
as an uppercase letter.

Oಏen when we talk about sets we need to make it clear what kinds of things
they can contain. We do this by stating what the universe of discourse is. The
universe is just another set, denoted 𝒰 , but every other set we talk about must
draw its elements ಎom 𝒰 . I.e., as described below, every set must be a

subset of 𝒰 .

Haskell note:
In Haskell, we’ll use lists as sets, so a set of elements of type a will have

type [a]. We’ll have to take care to ensure that our lists are always sorted and
de-duplicated. We will provide you with a function distinct which will take an
arbitrary list and transform it into a valid set:

ghci> distinct [1,3,2,1,3,5]
[1,2,3,5]

We will use the elem function as the equivalent to ∈:

ghci> 3 `elem` [1,2,3,5]
True

And finally, we can use list comprehensions as an analogue to set builder
notation. For example,

{𝑥􏷡 ∣ 𝑥 ∈ {1… 10}}

becomes

[x^2 | x <- [1..10]]
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Operations on sets

Perhaps the fundamental operation on sets is membership. The logical propo-
sition 𝑒 ∈ 𝑆 states “𝑒 is a member of set 𝑆”. Likewise, 𝑒 ∉ 𝑆 states “𝑒 is not a
member of 𝑆”. Since ∈ is a proposition, we can make logical statements using
it:

𝑒 ∈ 𝑆 → 𝑒 ∈ 𝒰

This expresses our statement above that all the elements of the sets we are
talking about must be elements of the universe.

If we want to relate two sets to each other, we can ask, to what extent do
they overlap? If, given two sets 𝐴 and 𝐵, we find that every element of 𝐴 is also
an element of 𝐵 then we say that “𝐴 is a subset of 𝐵” and write this as 𝐴 ⊆ 𝐵.
Logically,

𝐴 ⊆ 𝐵 ⇔ ∀𝑎 ∈ 𝐴 ∶ 𝑎 ∈ 𝐵

If 𝐴 ⊆ 𝐵 then we can also say that 𝐵 is a superset of 𝐴. Sometimes we write 𝐴 ⊂ 𝐵 to mean that 𝐴 is
a “proper” subset of 𝐵, that is, 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵.There are a few easy-to-veri௫ tautologies about set membership and the

subset relation:

𝑎 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵 → 𝑎 ∈ 𝐵 (Definition of ⊆)
𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 → 𝐴 = 𝐵 (Symmetry)
𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶 (Transitivity)

𝐴 ⊆ 𝐴, for any set 𝐴 (Reflexivity)

Given two sets, there are a number of operations we can perform that will
result in a new set:

𝐴 ∪ 𝐵 (Union)
𝐴 ∩ 𝐵 (Intersection)
𝐴 ⧵ 𝐵 (Set difference)
𝐴 ⊖ 𝐵 (Symmetric difference)

Each of these can be defined by a set builder on 𝒰 and the logical equivalent
to the above descriptions:

Operation Set builder expression

𝐴 ∪ 𝐵 {𝑒 ∣ 𝑒 ∈ 𝒰 ∧ (𝑒 ∈ 𝐴 ∨ 𝑒 ∈ 𝐵)}
𝐴 ∩ 𝐵 {𝑒 ∣ 𝑒 ∈ 𝒰 ∧ (𝑒 ∈ 𝐴 ∧ 𝑒 ∈ 𝐵)}
𝐴 ⧵ 𝐵 {𝑒 ∣ 𝑒 ∈ 𝒰 ∧ (𝑒 ∈ 𝐴 ∧ 𝑒 ∉ 𝐵)}
𝐴 ⊖ 𝐵 {𝑒 ∣ 𝑒 ∈ 𝐴 ∪ 𝐵 ∧ 𝑒 ∉ 𝐴 ∩ 𝐵}

Figure 2: Set operations

The cardinality of a set 𝐴, written |𝐴| roughly defines the “size” of the set.
For finite sets, this is simply the number of (unique) elements in the set. Interestingly, there are different “sizes” of

infinite sets. For example, |ℕ| < |ℝ|; the set
of real numbers has more elements than the
set of natural numbers, even though both are
infinite!
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If 𝐴 ⊆ 𝐵 then we have |𝐴| ≤ |𝐵|. Similarly, if 𝐴 ⊂ 𝐵 then |𝐴| < |𝐵|.
Some properties relating cardinality and the above set operations are easy to

derive:

|𝐴 ∪ 𝐵| = |𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

|𝐴 ∩ 𝐵| ≤ |𝐴| ∧ |𝐴 ∩ 𝐵| ≤ |𝐵|

or equivalently
|𝐴 ∩ 𝐵| ≤ max |𝐴|, |𝐵|
|𝐴 ⧵ 𝐵| = |𝐴| − |𝐴 ∩ 𝐵|

|𝐴 ⊖ 𝐵| = |𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|

Figure 3: Cardinality of set operations

For sets constructed via the set builder notation, note that we have

|{… ∣ 𝑠􏷠 ∈ 𝑆􏷠, 𝑠􏷡 ∈ 𝑆􏷡, … , 𝑠𝑛 ∈ 𝑆𝑛, …}| ≤
𝑛
􏾟
𝑖=􏷠
|𝑆𝑖|

Powersets: The powerset of a set 𝐴 is the set of all subsets of 𝐴. That is

𝒫(𝐴) = {𝐴′ ∣ 𝐴′ ⊆ 𝐴}

For example,
𝒫({1, 2}) = {∅, {1}, {2}, {1, 2}}

Note that the powerset of any set always includes the empty set. This is true
even of the empty set itself:

𝒫(∅) = {∅}

Note that {∅} ≠ ∅. The former is a set containing a single element, while the
later contains no elements.

One way to view the construction of the powerset is as if each element of the
input set had a “switch” attached to it, labeled I௹/Oఀ௿. We can construct any
particular subset by flipping the switches: those whose elements are I௹ will be
in the subset, and those which are Oఀ௿ will not. I.e., we have something like

{1I௹, 2Oఀ௿, 3Oఀ௿, 4I௹} ⟶ {1, 4}

By looking at all possible configurations of switches, we can see all the
possible subsets.
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Here, for example, are all the subsets of {1, 2, 3}:

1 2 3 Subset

Oఀ௿ Oఀ௿ Oఀ௿ ∅
I௹ Oఀ௿ Oఀ௿ {1}
Oఀ௿ I௹ Oఀ௿ {2}
I௹ I௹ Oఀ௿ {1, 2}
Oఀ௿ Oఀ௿ I௹ {3}
I௹ Oఀ௿ I௹ {1, 3}
Oఀ௿ I௹ I௹ {2, 3}
I௹ I௹ I௹ {1, 2, 3}

We can also generate the powerset by an inductive formulation:

𝒫(∅) = {∅} (Base case)

Let 𝐴 = {𝑥} ∪ 𝐴′ with 𝑥 ∉ 𝐴′. Then

𝒫(𝐴) = 𝒫({𝑥} ∪ 𝐴′) = 𝒫(𝐴′) ∪ {{𝑥} ∪ 𝑃 ∣ 𝑃 ∈ 𝒫(𝐴′)} (Inductive case)

That is, at each inductive step, we choose an arbitrary element of 𝐴, remove
it producing 𝐴′, recursively construct 𝒫(𝐴′), and then add 𝑥 to every set in
𝒫(𝐴′) and union that with the (unchanged) 𝒫(𝐴′). At some point we will
remove the last element, at which point 𝐴′ = ∅ and the recursive powerset will
use the base case.

Cardinality of 𝒫 : How many subsets does a given set have? Looking at the
above table, we see that for a set with three elements, there are eight possible
subsets, including the empty set. For each element in the original set, it’s
“switch” can be in one of two states. Thus, by the rule of product, the total
number of possible configurations is 2 × 2 × 2 = 2􏷢 = 8. In general, if 𝑛 = |𝐴|
then 2𝑛 = |𝒫(𝐴)|. Figuring out how many subsets to expect is a good way to
check your work, if you are trying to generate all the subsets.

Equality between sets: Since sets are unordered, we define equality between sets
to mean “containing the same elements”. That is,

𝐴 = 𝐵 iff (∀𝑎 ∈ 𝐴∶ 𝑎 ∈ 𝐵) ∧ (∀𝑏 ∈ 𝐵∶ 𝑏 ∈ 𝐴)

or equivalently,
𝐴 = 𝐵 iff 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

Two sets with the same cardinality (possibly infinite, but of the “same size”
infinite) are isomorphic even if they are not equal. Isomorphism just means
that we can construct a pairing of elements between the two sets, such that
each element ಎom 𝐴 is paired with a single unique element ಎom 𝐵, and each
element of 𝐵 is paired with a single unique element of 𝐴. Because we can always
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move “back and forth” between the two sets, we can convert any operation on
𝐴 into an operation on 𝐵, and vice versa, without loss of information. Thus,
two isomorphic sets can be regarded as being “extensionally equivalent”, because
anything we can do on the one can be done on the other.

Strings, Languages, and Grammars

A note on notation: As before, we will use uppercase letters 𝐴, 𝐵, 𝐶,… to re-
fer to unknown sets. 𝐿 will be used to refer to languages, for example, 𝐿email
the language of valid email address, or 𝐿prime the language of prime numbers
(expressed in some suitable base). We will use lowercase 𝑎, 𝑏, 𝑐, … for unknown
symbols (i.e., elements of Σ) and lowercase 𝑠, 𝑡, 𝑢, … for strings (elements of
Σ ∗). Thus, 𝑎𝑠 signifies a string that starts with the (unknown) character 𝑎 and
continues with the string 𝑠. Literal characters and strings will be written in
typewritter font: Σ = {a, b}, 𝑠 = ababa, etc.

Strings: As always when dealing with sets, we must define our universe of dis-
course. Here, we begin with Σ, the alphabet under consideration. For example,
if Σ = {a, b} then the only symbols we are interested in are a and b. We define
𝒰 = Σ ∗, the set of all strings over the alphabet. A string is a possibly-empty
sequence of symbols. For example, given Σ = {a, b}, some possible strings are
aa, b, and ababa. The empty string is denoted 𝜀. If we wish to formalize the
structure of a string, we can define it inductively by:

Eps
𝜀 ∈ Σ ∗ Sym

𝑎 ∈ Σ 𝑠 ∈ Σ ∗

𝑎𝑠 ∈ Σ ∗

We overload the notation |𝑠| to denote the length of the string 𝑠. For exam-
ple, we have |ababa| = 5 while |𝜀| = 0. We can define |𝑠| inductively by

Len-Eps
|𝜀| = 0

Len-Sym
|𝑠| = 𝑙

|𝑎𝑠| = 𝑙 + 1

We can concatenate strings to form larger strings. To make this explicit,
we will use the ⋅ operator: aaa ⋅ bbb = aaabbb. When it is unambiguous, we
will indicate concatenation by juxtaposition; i.e., if 𝑠􏷠 and 𝑠􏷡 are strings, then
𝑠􏷠𝑠􏷡 = 𝑠􏷠 ⋅ 𝑠􏷡. Again, for future reference, we give an inductive definition:

Cat-Eps 𝜀 ⋅ 𝑠 = 𝑠 Cat-Sym
𝑠􏷠 ⋅ 𝑠􏷡 = 𝑠
𝑎𝑠􏷠 ⋅ 𝑠􏷡 = 𝑎𝑠

Sometimes we will find it useful to reverse a string; we denote the reversal of
a string as 𝑆𝑅 and define it inductively as

Rev-Eps
𝜀𝑅 = 𝜀

Rev-Sym
𝑠𝑅 = 𝑠′

(𝑎𝑠)𝑅 = 𝑠′𝑎

Sometimes we will need to express that a string 𝑠􏷠 is a prefix of another
string 𝑠. For example, aba is a prefix of ababbb. We write this as aba ⊑ ababbb.
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Inductively, for a string 𝑠 ∈ Σ ∗

Pre-Eps
𝜀 ⊑ 𝑠

Pre-Sym
𝑠􏷠 ⊑ 𝑠
𝑎𝑠􏷠 ⊑ 𝑎𝑠

Note that for every string, it is the case that 𝑠 ⊑ 𝑠. If we want to express
“proper” prefixes (i.e., a prefix but not equal to the entire string) we will write
𝑠􏷠 ⊏ 𝑠.

Example 0.1 Prove that

∀𝑠􏷠, 𝑠􏷡 ∶ |𝑠􏷠 ⋅ 𝑠􏷡| = |𝑠􏷠| + |𝑠􏷡|

P௽௺௺௱. The proof proceeds by induction on the length of 𝑠􏷠.

• Base case: 𝑠􏷠 = 𝜀, |𝑠􏷠| = 0. Then, by rule Cat-Eps, 𝜀 ⋅ 𝑠􏷡 = 𝑠􏷡 and we have
|𝜀 ⋅ 𝑠􏷡| = |𝑠􏷡| = 0 + |𝑠􏷡|.

• Inductive case: 𝑠􏷠 = 𝑎𝑠′􏷠 for some 𝑠′􏷠. Then by rule Cat-Sym we have |𝑎𝑠′􏷠⋅𝑠􏷡| =
1 + |𝑠′􏷠 ⋅ 𝑠􏷡|. But by the IH we have |𝑠′􏷠 ⋅ 𝑠􏷡| = |𝑠′􏷠| + |𝑠􏷡|. By rule Len-Sym
|𝑎𝑠′􏷠| = 1 + |𝑠′􏷠|, so we have |𝑎𝑠′􏷠 ⋅ 𝑠􏷡| = 1 + |𝑠′􏷠| + |𝑠􏷡|. QED.

Languages: A language is some (possibly empty) subset of Σ ∗; a selection of
strings that have some property we are interested in. For example, {aa, bb},
{ababa}, {𝜀} and {} = ∅ are all valid languages. Note that there is an important difference

between {𝜀} and ∅; the former contains only
the empty string, while the latter contains no
strings at all.

Since enumerating the strings in a language is impractical for all but the
smallest sets, we will oಏen use either set-builder notation or inductive defini-
tions to define infinite languages. For example:

The language with an equal number of a’s and b’s, with all b’s following all
a’s:

{a𝑛b𝑛 ∣ 𝑛 ≥ 0}

The language 𝐿a+ of strings of a’s of length ≥ 1:

a ∈ 𝐿a+

𝑠 ∈ 𝐿a+
a𝑠 ∈ 𝐿a+

As languages are sets, the setwise union, intersection, complement (relative
to Σ ∗), etc. are all defined as one would expect. Two additional set operations
are available on sets of strings, language concatenation and the Kleene star.

Concatenation for languages is defined as the cross-wise concatenation of all
their strings. That is, for two languages 𝐿􏷠 and 𝐿􏷡 we have

𝐿􏷠 ⋅ 𝐿􏷡 = {𝑠􏷠 ⋅ 𝑠􏷡 ∣ 𝑠􏷠 ∈ 𝐿􏷠, 𝑠􏷡 ∈ 𝐿􏷡}

As with string concatenation, we will omit the ⋅ when this is unambiguous.
Some properties of language concatenation:

• ∅ ⋅ 𝐿 = 𝐿 ⋅∅ = ∅
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• {𝜀} ⋅ 𝐿 = 𝐿 ⋅ {𝜀} = 𝐿

• If 𝜀 ∈ 𝐿􏷡 then 𝐿􏷠 ⊆ 𝐿􏷠 ⋅ 𝐿􏷡 and similarly, if 𝜀 ∈ 𝐿􏷠 then 𝐿􏷡 ⊆ 𝐿􏷠 ⋅ 𝐿􏷡.

The Kleene star operation 𝐿∗ generates all possible self-concatenations of a
language. That is,

𝐿∗ =􏾌
𝑖∈ℕ

𝐿𝑖

Some properties of 𝐿∗:

• ∅∗ = {𝜀}∗ = {𝜀}

• If 𝐿 ≠ ∅ and 𝐿 ≠ {𝜀} then |𝐿∗| = ∞

• 𝐿 ⊆ 𝐿∗ for any 𝐿.

We summarize the properties of these operations in figure 4.

Identity Description

∅ ∪ 𝐿 = 𝐿 ∪∅ = 𝐿 ∅ is the identity of ∪
∅ ⋅ 𝐿 = 𝐿 ⋅∅ = ∅ ∅ is the zero of ⋅
{𝜀} ⋅ 𝐿 = {𝜀} ⋅ 𝐿 = 𝐿 {𝜀} is the identity of ⋅
∅∗ = {𝜀} From the definition of the Kleene star
{𝜀}∗ = {𝜀} From the definition of the Kleene star
𝐿 ⊆ 𝐿∗

Figure 4: Identies of language operations

Note that we do not, at this stage, place any restriction on how a language
may be defined. For example, this is a perfectly acceptable language:

𝐿prime = {𝑝 ∣ 𝑝 is prime}

In fact, the notions of languages and strings provides a ಎamework for thinking
about all sorts of problems. Any problem in which we are given some input,
expressible as a sequence of symbols, and have to determine whether it satisfies
some criteria, can be phrased as “is the string 𝑠 a member of a suitably defined
language?”.

Grammars

A grammar gives a way of defining a language by constructing a collection of
mutually-inductive sets which serve as the building-blocks of the language of
interest. Formally, a grammar is a four-tuple 𝐺 = (𝑉,Σ, 𝑅, 𝑆) where

• 𝑉 is the set of non-terminals (sometimes called variables).

• Σ is the alphabet, with Σ ∩ 𝑉 = ∅.

• 𝑅 is the set of rules (or productions), with 𝑅 ⊆ 𝑉 × (𝑉 ∪ Σ)∗.
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• 𝑆 is the start symbol, a distinguished element of 𝑉 (i.e., 𝑆 ∈ 𝑉).

Less formally, a grammar looks like:

𝐴 → 𝜀

𝐴 → a𝐴

𝐴 → 𝐴b

where we assume that 𝑆 is the first non-terminal defined in a rule, and the sets This grammar generates the language
𝐿ab = {𝑎𝑚𝑏𝑛 ∣ 𝑚, 𝑛 ∈ ℕ}.𝑉 and Σ consist of the non-terminals and terminals used in the grammar.

We denote the language generated by a grammar 𝐺 as 𝐿(𝐺). The language
generated by a grammar can be constructed by following rules, starting with
the start symbol. To present this more formally, we will extend our notion of
strings to allow

• Terminal strings ∈ Σ ∗.

• Nonterminal strings ∈ (𝑉 ∪ Σ)∗.

Nonterminal strings are allowed to have non-terminals in them. For example,
ab𝐴ba is a nonterminal string. Our process will intuitively consist of start-
ing with the string 𝑆 (i.e., the start symbol) and “applying” rules to the non-
terminals in it until we reach a terminal string. We define application of a rule
to a string as

𝑠 = 𝑠􏷠𝐴𝑠􏷡 (𝐴 → 𝐷) ∈ 𝑅
𝑠⟹ 𝑠􏷠𝐷𝑠􏷡

(I.e., the possibly-nonterminal string on the right-hand side of the rule is
“spliced in” to the string in place of 𝐴.)

We extend⟹ to the idea of derivability: a string 𝑠􏷡 is derivable ಎom 𝑠􏷠
(written 𝑠􏷠

∗
=⇒ 𝑠􏷡) if there is a sequence of zero-or-more rule applications

𝑠􏷠 ⟹𝑠′􏷠 ⟹𝑠″􏷠 ⟹…⟹ 𝑠􏷡. We can define ∗=⇒ as

𝑠
∗
=⇒ 𝑠

𝑠􏷠 ⟹𝑠′􏷠 𝑠′􏷠
∗
=⇒ 𝑠􏷡

𝑠􏷠
∗
=⇒ 𝑠􏷡

Then we say that the language 𝐿(𝐺) generated by 𝐺 is given by

𝐿(𝐺) = {𝑠 ∣ 𝑆
∗
=⇒ 𝑠, 𝑠 ∈ Σ ∗}

(I.e., it is the set of terminal strings that are derivable ಎom the start symbol 𝑆.)

Proof of grammar/language equivalence

We can oಏen intuitively see that the language of a grammar matches that of
some other (e.g., set-builder) specification. However, we wish to prove this
more rigorously. In order to prove 𝐿 = 𝐿(𝐺) we must show that 𝐿 ⊆ 𝐿(𝐺) (i.e.,
every string in 𝐿 is in 𝐿(𝐺)) and 𝐿(𝐺) ⊆ 𝐿 (i.e., that every string in 𝐿(𝐺) is in 𝐿).
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In this sections we will develop the tools for proving these inclusions. We will
use the grammar

r􏷠 ∶ 𝑆 → 𝜀

r􏷡 ∶ 𝑆 → a𝑆

r􏷢 ∶ 𝑆 → 𝑆b

where 𝐿(𝐺) = {a𝑚b𝑛 ∣ 0 ≤ 𝑚, 𝑛}.
To show 𝐿 ⊆ 𝐿(𝐺) we must construct a derivation in 𝐺 for every string in 𝐿.

Since 𝐿 is infinite we obviously cannot do this directly, so instead we construct a
template sequence of applications in terms of 𝑚 and 𝑛. The template here is

𝑆
𝑚
==⇒ a𝑚𝑆 (by r􏷡)

a𝑚𝑆
𝑛
==⇒ a𝑚𝑆b𝑛 (by r􏷢)

a𝑚𝑆b𝑛 ⟹ a𝑚a𝑛 (by r􏷠)

By applying rule r􏷡 𝑚 times we can generate 𝑚 a’s at the beginning of the
string; by applying rule r􏷢 𝑛 times we can generate 𝑛 b’s at the end. Finally, we
finish with rule r􏷠 in order to eliminate the 𝑆 which remains in the middle and
close the string. (We could, of course, reverse the order of the applications of r􏷡
and r􏷢 without changing the result.)

To show 𝐿(𝐺) ⊆ 𝐿 we must show that every terminal string derived ಎom 𝑆 by
a finite number of rule applications is in 𝐿. Because the “length” of a derivation
is the number of applications used in it, we can use a proof by induction on
the number of applications. Developing our inductive hypothesis, however, will
be somewhat tricky, and is oಏen dependent on the details of the grammar in
question. We want a property which can be (easily!) proved about derivations of
length 1 (i.e., applications to 𝑆), and which we can show holds for derivations
of length 𝑛, if it is assumed to hold about derivations of length 𝑛+1. In the case
of 𝐿, the only relevant (or possible) property is that all a’s come before all b’s in
the string. The language places no restrictions on relationship on the number
of a’s or b’s; in more complex grammars, the terminals and non-terminals may
have interrelationships that the inductive step must be shown to preserve.

P௽௺௺௱. For any derivation 𝑆 ∗
=⇒ 𝑠 in G, 𝑠 has the property that all a’s appear

before all b’s. By induction on the length of the derivation.

• Base cases:

𝑆⟹ 𝜀 (by r􏷠, trivial)
𝑆⟹ a𝑆 (by r􏷡, a at the head)
𝑆⟹ 𝑆b (by r􏷢, b at the tail)

• Inductive cases: Assuming that … 𝑛
==⇒ 𝑠 has a’s before all b’s, we show that

𝑠 ⟹ 𝑠′ preserves this property, by showing that every possible application
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preserves it:

𝑆⟹ 𝜀 (r􏷠, trivial)
𝑆⟹ a𝑆 (r􏷡, adds an a at the head)
𝑆⟹ 𝑆b (r􏷢, adds a b at the tail)

Because every possible application either adds no new terminals (r􏷠) or
adds a terminal in the appropriate order, we conclude that the property is
preserved by the (𝑛 + 1)-th application. QED.

Regular Languages

Here we are interested in investigating the properties of a set of languages
known as the regular languages. We denote this set REG. The set REG is defined
inductively ಎom the operations we’ve already seen:

Empty ∅ ∈ REG Symbol
𝑎 ∈ Σ

{𝑎} ∈ REG

Concat
𝑅􏷠 ∈ REG 𝑅􏷡 ∈ REG

𝑅􏷠 ⋅ 𝑅􏷡 ∈ REG
Union

𝑅􏷠 ∈ REG 𝑅􏷡 ∈ REG
𝑅􏷠 ∪ 𝑅􏷡 ∈ REG

Star
𝑅 ∈ REG
𝑅∗ ∈ REG

We can also define the set of regular langauges as those generated by regular
grammars: A grammar is regular if every rule can be put into one of the forms

𝐴 → a

𝐴 → a𝐵

𝐴 → 𝜀

Note that the language generated by a grammar may still be regular even if
it does not have this form, so long as it can be transformed into the above form.
For example, the grammar

𝐴 → 𝐴a

𝐴 → 𝜀

which defines the language {𝑎𝑛 ∣ 𝑛 ≥ 0} is not regular, but it is equivalent to the
grammar

𝐴 → a𝐴

𝐴 → 𝜀

which is.
Intuitively, you can think of regular languages as languages which have

the ability to perform repetition, but not the ability to “count” or “keep track”
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of how many times something has occured. Thus, for example, the language
of arithmetic expressions with parentheses is not regular, because matching
parentheses requires “keeping track” of how deeply we are nested. Regular
languages have no “memory”.1 1 We will see later that this is literally the

case: deterministic finite state machines, the
computational implementation of regular
languages, do not have any memory!Properties of regular languages

Regular languages can have several interesting properties which will be of use to
use later.

Definition 0.1 A language 𝐿 is empty if 𝐿 = ∅.

Definition 0.2 A language 𝐿 is nullable if 𝜀 ∈ 𝐿.

Definition 0.3 A language 𝐿 is null if 𝐿 = {𝜀}.

Definition 0.4 A language 𝐿 is infinite if 𝐿 does not contain finitely many
strings. A language that is not infinite is finite.

Closure properties of regular languages

Since we have built-up regular languages union, concatenation, and Kleene
star operations, it should be obvious that REG is closed under these same opera-
tions: if we take (e.g.) the union of two regular languages, the result will still
be regular. Is this true of the other set operations? I.e., is REG closed under
intersection, complement, difference, and symmetric difference? What if we
define the reversal of a regular language 𝐿𝑅 to be

𝐿𝑅 = {𝑠𝑅 ∣ 𝑠 ∈ 𝐿}

Is the reversal of a regular language also regular?
In fact, the answer to all these is Yes. The proofs for the set operations are

all interrelated (because 𝐴− 𝐵 = 𝐴∩¬𝐵, ¬𝐴 = Σ −𝐴, 𝐴∩𝐵 = ¬(¬𝐴∪¬𝐵), etc.)
The proofs proceed on the structure of a RE; since we have already established
that 𝐿(RE) = REG, this is sufficient. We will demonstrate the process for the
reversal; proofs of the other closure properties are leಏ as an exercise for the
reader. Which might make an appearance on the

midterm or final…

Lemma 0.5 ?? For 𝑠 ∈ Σ ∗, if 𝑠 = 𝑠􏷠𝑠􏷡 then 𝑠𝑅 = 𝑠𝑅􏷡 𝑠𝑅􏷠 .

P௽௺௺௱. For 𝑟 ∈ RE, 𝑟𝑅 ∈ RE. Proof by induction on the structure of 𝑟.

• If 𝑟 = 0 then 𝐿(𝑟) = ∅ and ∅𝑅 = ∅.

• If 𝑟 = 𝑎, 𝑎 ∈ Σ then 𝐿(𝑟) = {𝑎} and {𝑎}𝑅 = {𝑎}.

• If 𝑟 = 𝑟􏷠 ∪ 𝑟􏷡 then by the induction hypothesis, 𝑟𝑅􏷠 ∈ RE, 𝑟𝑅􏷡 ∈ RE, and 𝑟𝑅 = 𝑟𝑅􏷠 ∪ 𝑟𝑅􏷡
so it follows that 𝑟𝑅 ∈ RE.
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• If 𝑟 = 𝑟􏷠𝑟􏷡 then let 𝑟′ = 𝑟𝑅􏷡 𝑟𝑅􏷠 . By IH, 𝑟𝑅􏷠 ∈ RE and 𝑟𝑅􏷡 ∈ RE, and thus 𝑟′ ∈ RE.

• If 𝑟 = 𝑟∗􏷠 then 𝑟′ = (𝑟𝑅􏷠 )∗. By IH, 𝑟𝑅􏷠 is regular, and thus 𝑟′ ∈ 𝑅𝐸.
⊣

The Pumping Lemma for Regular Language

Showing that a language is regular is relatively easy: just construct one of
the valid representations for a REG for it (literal finite set, RE, DFA, NDA(-𝜀),
or regular grammar). Showing that a language is not regular is somewhat
more tricky, as we would have to show that no such representation can be
constructed. In this section we will derive a general result about all regular
languages and representations, which will give us a method for categorizing
languages which cannot be regular.

Consider a DFA 𝑀:

0 1

2 3

b

a

a

ba b

a,b

A path through a machine is an ordered sequence of nodes. For example,
one path in 𝑀 ಎom state 0 to 3 is p = ⟨0, 1, 3, 2, 1, 3⟩. Note that the length of
a path |p| is defined to be the number of nodes −1. I.e., for the path given we
have |p| = 5. The length of a path gives the number of

transitions in the path, not the number of
nodes visisted, and thus is one less than the
number of nodes.

A cycle is a path ⟨𝑛􏷟, 𝑛􏷠, … 𝑛𝑖⟩ such that 𝑛􏷟 = 𝑛𝑖. Note that there is a subpath
of p which is a cycle: ⟨1, 3, 2, 1⟩. In fact, for a machine with 𝑘 states, we can
easily see than any path p with |p| ≥ 𝑘 must have a cycle, because such a path
will visit 𝑘 + 1 nodes, and by the pigeonhole principle, must visit at least one
node more than once.

Note, also, that in a DFA we have no way to distinguish one trip around
a cycle ಎom another, so if we are generating strings and we find a cycle, we
know that any number of trips around the cycle (including 0) will produce a
valid string. This forms the key part of the pumping lemma: for a “sufficiently
long” string, we are guaranteed to find a cycle; if we can show that some of the
strings resulting ಎom repeating the cycle (“pumping”) are not in the language,
then the language is not regular, because there is no way to build a DFA that can
“count” the number of trips around a cycle and thus distinguish between them.

Put more concretely, assuming our machine has 𝑘 states, we are looking for
a string of length ≥ 𝑘. For the above machine, we could take the string ababb.
Then, because this string must have visited ≥ 𝑘 + 1 states, we know that it
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contains a cycle. (In this case, the cycle is a(bab)b.) And, since 𝐿 is assumed to
be regular, we know that we should be able to “pump” the cycle, repeating it:
a(bab)𝑖b, 𝑖 ≥ 0 and all the resulting strings will still be in 𝐿.

If the string is longer than 𝑘, then there is some prefix of length 𝑘 that
contains a cycle. If it is not obvious why this must be the case, consider that a
prefix of length 𝑘 is still a string of length 𝑘, and thus must have visited 𝑘 + 1
nodes, and thus, some node more than once. So we do not need to look a
strings longer than 𝑘, although it will oಏen be useful to do so.

A cycle cannot have length 0, it must include at least one transition (al-
though it could be a cycle such as ⟨1, 1⟩ which visits a single node twice).
Hence, the portion of the string which is generated by the cycle must have
length at least ⒈ This leads us to the full definition of the pumping lemma:

Lemma 0.6 The Pumping Lemma for regular languages
Let 𝐿 be a regular language, generated by a DFA with 𝑘 states. Then for every

𝑠 ∈ 𝐿 with |𝑠| ≥ 𝑘, we have

𝑠 = 𝑢𝑣𝑤 for some substrings 𝑢, 𝑣, 𝑤
|𝑢𝑣| ≤ 𝑘

|𝑣| ≥ 1

𝑢𝑣𝑖𝑤 ∈ 𝐿 for any 𝑖 ≥ 0

(Note that this definition allows one or both of 𝑢,𝑤 to be 𝜀.)
To apply the pumping lemma, we assume that the language in question is

regular, and can be generated by a machine with 𝑘 states (leaving 𝑘 unknown).
We then construct a string 𝑠 in the language, usually with the structure of the
string depending on 𝑘. Finally, we show that there is no decomposition of 𝑠 into
𝑢, 𝑣, 𝑤 such that 𝑢𝑣𝑖𝑤 ∈ 𝐿 for all 𝑖 ≥ 0.

Example 0.2 Prove that the language

𝐿 = {a𝑖b𝑖 ∣ 𝑖 ≥ 0}

is not regular.

Assume that 𝐿 is regular, and is generated by some DFA with 𝑘 states. Let

𝑠 = a𝑘b𝑘 (∈ 𝐿)

Then, for any decomposition of 𝑠 = 𝑢𝑣𝑤 according to the conditions above, we
have 𝑢𝑣 = a𝑖 with 𝑖 ≥ 1. (Because there are 𝑘 a’s at the beginning of the string,
and we have |𝑢𝑣| ≤ 𝑘 we know that the 𝑢𝑣 portion of the string consists of some
number of a’s, and no b’s, and because |𝑣| ≥ 1 we know that 𝑢𝑣 consists of at
least one a.) But then we have 𝑣 = 𝑎𝑗 with 1 ≤ 𝑗 ≤ 𝑘. If we pump 𝑣, then the
prefix 𝑢𝑣 will consist of 𝑘′ a’s with 𝑘′ > 𝑘 and thus the resulting string is not in
𝐿. ⊣
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Regular Expressions

Names for regular languages

Defining a regular language by giving the operations used to build it is cumber-
some: ({𝑎} ⋅ {𝑏}) ∪ {𝑏}∗. We would like a way to “name” regular languages that
succinctly and clearly represents the operations used to build them. This role is
served by regular expressions.2 2 Note that regular expressions as we define

them are a more limited form of the regular
expressions commonly seen in normal
programming languages. REs have been
extended over the years with named captures,
backreferences, etc. to the extent that they
hardly resemble their theoretical foundations.

We define the set of regular expressions RE inductively as follows:

Empty 0 ∈ RE Symbol
a ∈ Σ
a ∈ RE

Union
𝑟􏷠 ∈ RE 𝑟􏷡 ∈ RE

𝑟􏷠 + 𝑟􏷡 ∈ RE
Concat

𝑟􏷠 ∈ RE 𝑟􏷡 ∈ RE
𝑟􏷠𝑟􏷡 ∈ RE

Star
𝑟 ∈ RE
𝑟∗ ∈ RE

It is important to note that a regular expression is not a regular language. A
regular expression names a regular language, but we still have to define how a
regular expression is interpreted. We define the function 𝐿(𝑟) to be the interpre-
tation of 𝑟 as a regular language. (The names of the rules above should clue you
in to their function when translated to regular languages.)

𝐿(0) = ∅

𝐿(a) = {a}

𝐿(𝑟􏷠 + 𝑟􏷡) = 𝐿(𝑟􏷠) ∪ 𝐿(𝑟􏷡)

𝐿(𝑟􏷠𝑟􏷡) = 𝐿(𝑟􏷠) ⋅ 𝐿(𝑟􏷡)

𝐿(𝑟∗) = 𝐿(𝑟)∗

Properties of regular expressions

We can determine all of the properties listed in section ?? by examining the
structure of the regular expression that generates it. This is obviously better
than trying to enumerate the strings in the generated language in order to
test the property. As an example, we will describe a recursive procedure for
determining whether a language 𝐿(𝑟) is empty. Note that just because 𝐿(𝑟) = ∅
it is not necessarily the case that 𝑟 = 0! For example, 𝐿((a0) + 0) = ∅.

• If 𝑟 = ∅ then 𝑟 is empty.

• If 𝑟 = 𝑎, 𝑎 ∈ Σ then 𝑟 is not empty.

• If 𝑟 = 𝑟􏷠 ∪ 𝑟􏷡 then if either 𝑟􏷠 or 𝑟􏷡 is non-empty, then 𝑟 is non-empty.

• If 𝑟 = 𝑟􏷠𝑟􏷡 then if either 𝑟􏷠 or 𝑟􏷡 is empty, 𝑟 is empty.

• If 𝑟 = 𝑟′∗ then false (because the Kleene star always contains at least 𝜀).
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Matching regular expressions directly

Here we are concerned with the problem of writing a function which takes a
regular expression and a string and returns True if the RE matches the string.
That is, the function determines whether 𝑠 ∈ 𝐿(𝑟) for string 𝑠 and regular
expression 𝑟.

Formally, we match a regular expression against a string by structural recur-
sion on the RE. The only slightly tricky cases are for ⋅ and ∗ as we shall see.

Definition of 𝑠 ∈ 𝐿(𝑟) by structural recursion on 𝑟:

Zero 𝑠 ∉ ∅ Symbol
𝑎 ∈ Σ
𝑎 ∈ 𝑎

Union
𝑠 ∈ 𝑟􏷠 ∨ 𝑠 ∈ 𝑟􏷡
𝑠 ∈ 𝑟􏷠 + 𝑟􏷡

Cat
𝑠 = 𝑠􏷠𝑠􏷡 𝑠􏷠 ∈ 𝑟􏷠 𝑠􏷡 ∈ 𝑟􏷡

𝑠 ∈ 𝑟􏷠 ⋅ 𝑟􏷡

Star-𝜀
𝜀 ∈ 𝑟∗

Star
𝑠 = 𝑠􏷠𝑠􏷡 𝑠􏷠 ≠ 𝜀 𝑠􏷠 ∈ 𝑟 𝑠􏷡 ∈ 𝑟∗

𝑠 ∈ 𝑟∗

In both the Cat and Star cases, we have the premise 𝑠 = 𝑠􏷠𝑠􏷡. 𝑠􏷠 and 𝑠􏷡 must
range over all possible splits of 𝑠. That is, if 𝑠 = ab then it is necessary to test the
premises over all of 𝑠􏷠 = 𝜀, 𝑠􏷡 = ab; 𝑠􏷠 = a, 𝑠􏷡 = b; 𝑠􏷠 = ab, 𝑠􏷡 = 𝜀. In the case of
Star, we remove the possibility that 𝑠􏷠 = 𝜀 as the Star-𝜀 rule handles this case.

The necessity to test Cat and Star over all possible splits leads to this method
being very inefficient. For RE with many nested stars or concatenations, the
same splits being repeatedly computed and tested.

An incorrect method for matching regular expressions

One commonly-expounded method for matching RE is to match the RE against
the longest possible prefix of the string; if the “prefix” that matches is in fact
the entire string, then the match is successful. This method is incorrect, due to
the seemingly-innocuous phrase “longest possible”. Recall that an RE such as
a∗ when part of a larger RE does not match as many a’s as possible, but rather as
many as necessary. The difference is clear if we consider a pair of equivalent REs
such as

a∗a and aa∗

These should both match all strings consisting of 1 or more a’s. However, using
the “greedy” algorithm described in this section, the second will match but the
first will fail; the initial a∗ will consume all the a’s in the string, leaving nothing
for the final a to match.

Nonetheless, this method is commonly seen presented as “the” method for
matching regular expressions, and it is simpler and faster than many of the
more sophisticated methods we shall see, so we present it here. But we stress
that what it matches are not REs, but rather some restricted subset thereof.

We say that
𝑠𝜀 ∈ 𝑟
𝑠 ∈ 𝐿(𝑟)
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Bear in mind in the rules presented below that while the prefix 𝑠􏷠 and the RE 𝑟
are the “inputs”, 𝑠􏷡, the remainder of the string to be matched, is an “output”.

Empty 𝑠 ∉ ∅ Symbol
𝑎 ∈ Σ
𝑎𝑠􏷡 ∈ 𝑎

Union
𝑠􏷠𝑠􏷡 ∈ 𝑟􏷠 ∨ 𝑠􏷠𝑠􏷡 ∈ 𝑟􏷡

𝑠􏷠𝑠􏷡 ∈ 𝑟􏷠 + 𝑟􏷡
Cat

𝑠􏷠𝑠􏷡 ∈ 𝑟􏷠 𝑠􏷡𝑠􏷢 ∈ 𝑟􏷡
𝑠􏷠𝑠􏷢 ∈ 𝑟􏷠 ⋅ 𝑟􏷡

Star-𝜀
𝜀𝑠􏷡 ∈ 𝑟∗

Star
𝑠􏷠𝑠􏷡 ∈ 𝑟 𝑠􏷡𝑠􏷢 ∈ 𝑟∗

𝑠􏷠𝑠􏷢 ∈ 𝑟∗

A continuation-based approach to matching regular expressions

Although the pure prefix matching method presented in the previous section
is incorrect, we can see the germ of a good idea in it. The problem is that we
do not retain enough information about what the remainder of the RE needs
to match; when matching the Kleene star in a∗a we have no knowledge of the
following a.

We can encode the knowledge of the rest of the RE in a continuation. A con-
tinuation is simply a function that tells us “what to do next”. In a continuation-
passing style, a normal function does not return a value directly, but rather
passes it to its continuation, which it receives as an argument, and then returns
the result of the continuation.

We will use the notation 𝑠; 𝑘 ∈ 𝑟 to mean that 𝑟 matches 𝑠 with continuation
𝑘. We say that

𝑠; (𝜆𝑠′.𝑠′ = 𝜀) ∈ 𝑟
𝑠 ∈ 𝑟

(As shown, our continuations are 𝜆 abstractions over propositions. The nota-
tion 𝑘 𝑠 means that 𝑘 is true of string 𝑠.)

Empty
𝑠; 𝑘 ∉ ∅

Symbol-𝜀
𝑎 ∈ Σ
𝜀; 𝑘 ∉ 𝑎

Symbol
𝑎 ∈ Σ 𝑘 𝑠
𝑎𝑠; 𝑘 ∈ 𝑎

Union
𝑠; 𝑘 ∈ 𝑟􏷠 ∨ 𝑠; 𝑘 ∈ 𝑟􏷡
𝑠; 𝑘 ∈ 𝑟􏷠 + 𝑟􏷡

Cat
𝑠; (𝜆𝑠′.𝑠′; 𝑘 ∈ 𝑟􏷡) ∈ 𝑟􏷠

𝑠; 𝑘 ∈ 𝑟􏷠 ⋅ 𝑟􏷡

Star-𝜀
𝑘 𝑠

𝑠; 𝑘 ∈ 𝑟∗
Star

𝑠; (𝜆𝑠′.𝑠 ≠ 𝑠′ ∧ 𝑠′; 𝑘 ∈ 𝑟∗) ∈ 𝑟
𝑠; 𝑘 ∈ 𝑟∗

Matching by enumeration

Haskell gives us the ability to manipulate infinite data structures. Can we
implement a RE matching algorithm that works simply by searching through an
infinite list? As it turns out, the answer is Yes, although this will turn out to be
one of the most inefficient methods of RE matching we will examine.

In order to search through an infinite list, we must know when to stop look-
ing. The obvious case is when we find the string in question, but, of course, the
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string may not exist in 𝐿(𝑟). In that case, we would ideally like to avoid contin-
uing our search on to the “end” of an infinite list! In order to give ourselves an
exit, we will work with length-ordered lists. The items in our lists will be sorted
by length, so that all strings of length 𝑛 appear before any strings of length
𝑛 + 1. Thus, we continue our search for the string 𝑠 until we see a string which
is longer than 𝑠. At this point, no strings of length |𝑠| will occur later in the
list, and we can safely reject the string.

We will use the Haskell notation for list construction: the empty list is []
while the list with head 𝑒 and tail 𝑡 is 𝑒 ∶ 𝑡. We define membership in a length-
ordered list as

𝑒 ∉ []
|𝑒| < |𝑒′|
𝑒 ∉ (𝑒′ ∶ 𝑠) 𝑒 ∈ (𝑒 ∶ 𝑡)

𝑒 ≠ 𝑒′ 𝑒 ∈ 𝑡
𝑒 ∈ (𝑒′ ∶ 𝑡)

We then define the function LOL(𝑟) to be the length-ordered language of 𝑟
and say that

𝑠 ∈ LOL(𝑟)
𝑠 ∈ 𝐿(𝑟)

where LOL(𝑟) is defined by the following rules:

Empty
LOL(∅) = []

Symbol
𝑎 ∈ Σ

LOL(𝑎) = [𝑎]
To construct the union of two length ordered lists, we merge them, using

string length as our comparison key:

[] ∪ 𝑙􏷡 = 𝑙􏷡 𝑙􏷠 ∪ [] = 𝑙􏷠

LT
|𝑎| < |𝑏|

(𝑎 ∶ 𝑡􏷠) ∪ (𝑏 ∶ 𝑡􏷡) = 𝑎 ∶ (𝑡􏷠 ∪ (𝑏 ∶ 𝑡􏷡))

EQ
|𝑎| = |𝑏|

(𝑎 ∶ 𝑡􏷠) ∪ (𝑏 ∶ 𝑡􏷡) = 𝑎 ∶ 𝑏 ∶ (𝑡􏷠 ∪ 𝑡􏷡)

GT
|𝑎| > |𝑏|

(𝑎 ∶ 𝑡􏷠) ∪ (𝑏 ∶ 𝑡􏷡) = 𝑏 ∶ ((𝑎 ∶ 𝑡􏷠) ∪ 𝑡􏷡)
To do a length-ordered concatenation, we decompose the result of (𝑎 ∶ 𝑡􏷠)⋅(𝑏 ∶

𝑡􏷡) into (𝑎 ⋅ 𝑏) ∶ (([𝑎] ⋅ 𝑡􏷡) ∪ (𝑡􏷠 ⋅ (𝑏 ∶ 𝑡􏷡))):

[] ⋅ 𝑙􏷡 = [] 𝑙􏷠 ⋅ [] = []

(𝑎 ∶ 𝑡􏷠) ⋅ (𝑏 ∶ 𝑡􏷡) = (𝑎 ⋅ 𝑏) ∶ (([𝑎] ⋅ 𝑡􏷡) ∪ (𝑡􏷠 ⋅ (𝑏 ∶ 𝑡􏷡)))
Constructing a length-ordered Kleene start follows ಎom the recursive

definition: 𝐿∗ = {𝜀} ∪ 𝐿 ⋅ 𝐿∗.

(𝜀 ∶ 𝑡)∗ = 𝑡∗
𝑎 ≠ 𝜀

(𝑎 ∶ 𝑡) = 𝜀 ∶ ((𝑎 ∶ 𝑡) ⋅ (𝑎 ∶ 𝑡)∗)

Note that the 𝜀 case here is not a base case. In fact, the Kleene star rule has no
base case! However, due to the fact that 𝐿∗ is self-recursive and relies on ⋅ for
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its implementation, if 𝜀 ∈ 𝐿(𝑟) then a naive implementation would generate
an infinite list of 𝜀. While this does not contradict our requirement that the
lists be ordered by length, it is not particularly useful, either. Singling out 𝜀 for
special treatment allows the remainder of the list to be processed.

Matching regular expressions using derivatives

Here we build a more straightforward method for matching regular expressions,
that relies on a clever trick: taking the derivative of a regular expression!

Although you are probably familiar with the derivative ಎom calculus, as the
derivative of ℝ-valued functions, we can in fact define the derivative of other
structures. The only hard-and-fast requirement is that the derivative operator
𝐷 respect the product rule:

𝐷𝑣(𝑋 ⋅ 𝑌) = 𝑋 ⋅ 𝐷𝑣(𝑌) + 𝐷𝑣(𝑋) ⋅ 𝑌

This applies even when the operators + and ⋅ are not “traditional” addition and
multiplication. (In our case, they are union and concatenation).

We define the derivative of a regular expression 𝑟 with respect to a symbol 𝑐
to be the result of “pre-truncating” 𝑐 ಎom every string in 𝐿(𝑟). That is

𝐷𝑐(𝑟) = {𝑡 ∣ 𝑐𝑡 ∈ 𝐿(𝑟)}

(Note that if a string 𝑢 ∈ 𝐿(𝑟) does not start with 𝑐 then 𝑢 will not be present in
𝐷𝑐(𝑟) at all. This fact will be important.)

That is the definition of the derivative of a regular expression; it remains to
find it, given a particular regular expression. In order to help with this process,
we define the nullability function, which returns {𝜀} if a regular expression can
accept the empty string, and ∅ if it cannot:

𝛿(𝑟) =

⎧⎪⎪⎨
⎪⎪⎩
{𝜀} if 𝜀 ∈ 𝐿(𝑟)
∅ if 𝜀 ∉ 𝐿(𝑟)

𝛿(𝑟) can be defined quite easily ಎom the recursive definition of nullability giving
above. (And recall that {𝜀} = ∅∗.)

Given 𝛿(𝑟), we define the derivative operator 𝐷𝑐(𝑟) by structural recursion on
𝑟:

𝐷𝑐(∅) = ∅ (case ∅)
𝐷𝑐({𝜀}) = ∅ (case 0-length string)
𝐷𝑐(𝑐) = {𝜀} (symbol case 𝑐)
𝐷𝑐(𝑐′) = ∅ ((𝑐 ≠ 𝑐′))
𝐷𝑐(𝑅∗) = 𝐷𝑐(𝑅)𝑅∗ (Kleene star case)

𝐷𝑐(𝑅􏷠𝑅􏷡) = 𝐷𝑐(𝑅􏷠)𝑅􏷡 + 𝛿(𝑅􏷠)𝑅􏷠𝐷𝑐(𝑅􏷡) (concatenation case)
𝐷𝑐(𝑅􏷠 + 𝑅􏷡) = 𝐷𝑐(𝑅􏷠) + 𝐷𝑐(𝑅􏷡) (union case)
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Given the derivative, how can we use it to match against a string 𝑠? Suppose
𝑠 = 𝑐, a single symbol. In this case, we take the derivative with respect to 𝑐:
if 𝑐 is accepted then the derivative will be {𝜀}, if it is rejected it will be ∅. But
suppose our string is two symbols long, 𝑐􏷠𝑐􏷡. If we take the derivative with
respect to 𝑐􏷠 then the result will either be ∅ (if no strings starting with 𝑐􏷠
are accepted) or some non-empty regular expression 𝑟′. We can then take the
derivative of 𝑟′ with respect to 𝑐􏷡

(This method, due to Brzozowski, is more than 50 years old at this point,
but was only recently re-discovered and brought into wider knowledge.)

Deterministic Finite Automata

Deterministic finite automata (FSM) are the computational manifestations of
regular languages. Although we will prove this rigarously later, to begin with
we present the mathematical definition of a FSM, followed by several examples,
some familiar, some less so.

Finite state machines: A finite state machine is a 4-tuple 𝑀 = (𝑄, 𝑞􏷟, 𝐹, 𝛿) with
the following components: Some definitions make a FSM into a 5-tuple,

adding the alphabet 􏸼 to the definition; we
leave the alphabet as implicit.𝑄 (The set of states)

𝑞􏷟 ∈ 𝑄 (An identified state, the start state)
𝐹 ⊆ 𝑄 (The set of final states)
𝛿 ∶ 𝑄 × Σ → 𝒫(𝑄) (The transition function)

Since this kind of definition is rather cumbersome to visualize, we will
usually prefer to present machines as labeled directed graphs:

𝑞􏷟

𝑞𝑇

a

b

a, b
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This machine accepts the langauge a∗. Its formal definition is

𝑄 = {𝑞􏷟, 𝑞𝑇 }

𝑞􏷟 = 𝑞􏷟
𝐹 = {𝑞􏷟}

𝛿(𝑞􏷟, a) = 𝑞􏷟
𝛿(𝑞􏷟, b) = 𝑞𝑇
𝛿(𝑞𝑇 , a) = 𝑞𝑇
𝛿(𝑞𝑇 , b) = 𝑞𝑇

Note that we illustrate the start state with an arrow, and final states with
double-circles. Arcs between states are labeled with the symbol⒮ that will
trigger the corresponding transitions.

We generally refer to a state such as 𝑞𝑇 as a trap state. Its sole purpose is
to consume the remainder of the string aಏer an invalid symbol has been seen.
In this case, the only valid symbols are a’s, so if we see a b we know there is
nothing else that can happen in the remainder of the string that will cause it to
be accepted. Thus, the trap state is not final, and the trap state has transitions
∀𝑎 ∈ Σ ∶ 𝛿(𝑞𝑇 , 𝑎) = 𝑞𝑇 . But note that the trap state is not “special” or designated
in anyway. It is entirely possible for a machine to have multiple states which act
as traps, although in machines we construct by hand, this will not occur.

For a deterministic finite state machine, it will always be the case that ∀𝑞 ∈
𝑄, 𝑎 ∈ Σ ∶ |𝛿(𝑞, 𝑎)| = 1, i.e., the delta function will map a pair (𝑞, 𝑎) to a single
state. For non-deterministic machines we may have |𝛿(𝑞, 𝑎)| ≥ 1, and some
definitions allow machines with |𝛿(𝑞, 𝑎)| = 0 with the assumption that for any
𝑞, 𝑎 such that |𝛿(𝑞, 𝑎)| = 0, 𝛿(𝑞, 𝑎) = 𝑞𝑇 .

The language of a DFA

For any deterministic machine, we informally define acceptance of a string as
whether, aಏer “feeding” the string into the transition function, starting at 𝑞􏷟, is
the resulting state a final state? For example, the string aaa is accepted by the
above machine because

𝛿(𝑞􏷟, a) =𝑞􏷟
𝛿(𝑞􏷟, a) = 𝑞􏷟

𝛿(𝑞􏷟, a) = 𝑞􏷟
𝑞􏷟 ∈ 𝐹

We define the language of a DFA, 𝐿(𝑀) to be the set of strings that it accepts.
We can give two formal definitions of acceptance:

The 𝛿∗ function: We can extend 𝛿 to operate not just on individual characters,
but entire strings:
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𝛿∗-𝜀
𝛿∗(𝑞, 𝜀) = 𝑞

𝛿∗-𝑎𝑠
𝛿∗(𝑞, 𝑎) = 𝑞′ 𝛿∗(𝑞′, 𝑠) = 𝑞″

𝛿∗(𝑞, 𝑎𝑠) = 𝑞″

We then define acceptance as

𝑠 ∈ 𝐿(𝑀) iff 𝛿∗(𝑞􏷟, 𝑠) ∈ 𝐹

This definition is recursive in the length of the string. The next definition is
recursive in the length of the path traced through a machine during processing
of a string (of course, because each transition is triggered by a character ಎom
the string, the length of the path will be equal to the length of the string).

The modified machine language 𝐿𝑞(𝑀): Here we define an alternate version of
𝐿(𝑀), 𝐿𝑞(𝑀), the language of 𝑀 started in state 𝑞. Clearly, 𝐿𝑞􏷩 (𝑀) = 𝐿(𝑀), so if
we can define 𝐿𝑞(𝑀) we will have an easy definition for 𝐿(𝑀). We define 𝐿𝑞(𝑀)
as

𝐿𝑞-𝐹
𝑞 ∈ 𝐹

𝜀 ∈ 𝐿𝑞(𝑀)
𝐿𝑞-𝑞

𝛿(𝑞, 𝑎) = 𝑞′ 𝑠 ∈ 𝐿𝑞′ (𝑀)

𝑎𝑠 ∈ 𝐿𝑞(𝑀)

and again, we define acceptance as

𝑠 ∈ 𝐿(𝑀) iff 𝑠 ∈ 𝐿𝑞􏷩 (𝑀)

Proof that these methods are equivalent: Our first attempt would likely be to
prove this by induction on the length of 𝑠, however, a naive approach will fail.
The problem is that if we state our theorem as

∀𝑠 ∈ Σ ∗ ∶ 𝛿∗(𝑞􏷟, 𝑠) ∈ 𝐹 iff 𝑠 ∈ 𝐿𝑞􏷩 (𝑀)

then we will get stuck as soon as we apply a single transition. We will no longer
be in state 𝑞􏷟, and thus will be unable to apply the IH. Instead, we quanti௫ over
both all strings and all states:

∀𝑠 ∈ Σ ∗ ∶ ∀𝑞 ∈ 𝑄 ∶ 𝛿∗(𝑞, 𝑠) ∈ 𝐹 iff 𝑠 ∈ 𝐿𝑞(𝑀)

P௽௺௺௱. The proof is then straightforward by induction on 𝑠: Case 𝜀: 𝑠 = 𝜀.
Then by rules 𝛿∗-𝜀 and 𝐿𝑞-𝐹 we have 𝛿∗(𝑞, 𝜀) ∈ 𝐹 iff 𝜀 ∈ 𝐿𝑞(𝑀).

Case C௺௹௾: 𝑠 = 𝑎𝑠′ for some 𝑠′.

𝛿∗(𝑞, 𝑎𝑠′) ∈ 𝐹 iff 𝛿(𝑞, 𝑎) = 𝑞′ ∧ 𝛿∗(𝑞′, 𝑠′) ∈ 𝐹 (By rule 𝛿∗-𝑎𝑠)
iff 𝛿(𝑞, 𝑎) = 𝑞′ ∧ 𝑠′ ∈ 𝐿𝑞′ (𝑀) (By IH)
iff 𝑎𝑠′ ∈ 𝐿𝑞(𝑀) (By rule 𝐿𝑞-𝑞)

The proof is completed by letting 𝑞 = 𝑞􏷟. ⊣
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Nondeterministic Finite Automata

𝜀-transitions

We’ve seen how DFAs can be used to recognize and generate strings, and now
we want to consider the question of whether, and if so, how DFAs can be com-
bined to form larger machines. We’ll see later on that normal DFAs can in
fact be combined to form the union, concatenation, etc. of their languages
(and, indeed, this result will be a key part of our proof that DFAs recognize
accept exactly the regular languages) but performing these operations on stan-
dard DFAs is somewhat tricky and involved. In this section, we’ll introduce an
extension to DFAs called NDA-𝜀, DFAs with a touch of non-determinism “Non-determinism” is a computer science

term meaning “magic”.A NDA-𝜀 is a DFA in which transitions can be labeled with an element of
Σ∪{𝜀}. That is, we now allow transitions that “recognize” the empty string! For
example, here is a NDA-𝜀 that recognizes the language a∗b∗:

𝑠􏷠 𝑠􏷡

a

𝜀

b

.

This looks crazy; how does the machine know when to follow the 𝜀 arc? In
fact, we redefine acceptance for NDA-𝜀 machines as follows

Definition 0.7 An NDA-𝜀 accepts a string if there is any execution of the
machine in which the machine terminates in a final state with the entire string
consumed.

That is, a NDA-𝜀 magically knows when to take an 𝜀-transition, so that if
there is any possible way of ending in a final state, it will do so. Later, we’ll see
how this can be implemented on normal, non-magical computers, and indeed
how every NDA-𝜀 can be transformed into an equivalent DFA. Right now,
whether 𝜀-transitions are useful; we’ll worry about how to actually make them
work later.

Combining DFAs with 𝜀-transitions

Here are the DFAs that accept a∗ and b∗:

1

a

1

b
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If we look at the above machine, it would appear that all we have to do to
construct the concatenation of two machines is put an 𝜀-transition between
them. In fact, that’s almost the case. For what follows, we require our machines
to have a certain structure:

• The machine’s start state must have a single transition ಎom it, and this must
be an 𝜀-transition.

• The machine must have a single final state, and this state must have a single
𝜀-transition into it.

Any NFA can be trivially transformed into one that meets these criteria.
If the start state is not suitable then we simply add a new start state, with a
single 𝜀-transition to the original start state. Likewise, if the final state⒮ are
not suitable, we simply add a new final state, and add 𝜀-transitions ಎom every
existing final state (which will no longer be final) to the new final state. Thus,
every machine is of the form:

M𝜀 𝜀

Given this assumption, we can now proceed to construct machines for each
of the “constructors” of regular sets:

Empty set: The machine that accepts ∅ in 𝜀-form is simply

𝜀

With no way to reach the final state, no string is ever accepted.

Single symbol 𝑎: To build a machine which only accepts {𝑎} we use four states,
including the two “wrapper” states: one before we have recognized 𝑎, and one
aಏer:

𝜀 𝑎 𝜀

Concatenation (of machines 𝑀􏷠 and 𝑀􏷡): To construct the concatenation
of two machines, we simply string them together with an 𝜀 transition in the
middle. That is,

𝑀􏷠 𝑀􏷡
𝜀 𝜀 𝜀 𝜀 𝜀

(Note that we remove the final state on machine 𝑀􏷠.)
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Union (of machines 𝑀􏷠 and 𝑀􏷡): To build the union, we add a new start state
which branches to both machines with 𝜀 transitions. Likewise, the (formerly)
final states of both machines now join to a single new final state:

𝑀􏷠

𝑀􏷡

𝜀 𝜀

𝜀 𝜀

𝜀

𝜀

𝜀

𝜀

Kleene Star: To form the Kleene start of an existing machine, we “nest” it
inside a new pair of initial and final states (because we are going to add arcs to
the original states) and then add 𝜀 transitions that allow us to repeat the body
of the machine as much as necessary:

M𝜀 𝜀𝜀 𝜀

𝜀

𝜀

Execution of a NDA-𝜀

We now come to the problem of actually “running” a NDA-𝜀. Here we consider
executing a NDA-𝜀 on a string directly; later we will consider the problem of
converting a NDA-𝜀 to a DFA.

From a given state 𝑞, in a NDA-𝜀, for any 𝑎 ∈ Σ, we now have two possible
ways of transitioning to another state:

• Directly ಎom 𝑞, with 𝛿(𝑞, 𝑎) = 𝑞′

• Indirectly, by following some chain of 𝜀-transitions ಎom 𝑞 to some 𝑞𝑖, and
then following 𝛿(𝑞𝑖, 𝑎) = 𝑞𝑗 and finally following yet another chain of 𝜀-
transitions to reach a state 𝑞′.

The following machine illustrates both kinds of transitions:

0 1 2 3

4

𝜀 a 𝜀

a
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From node 1, by reading an a, we can reach nodes 3 and ⒋
In order to capture the notion of “all states reachable ಎom 𝑞 by 𝜀-transitions”

we define the 𝜀 closure function. The 𝜀 closure of a state is all the states that are
reachable ಎom it without consuming any input. (Thus, a state is always in its
own 𝜀 closure.) 𝜀-closure is defined inductively as

Base case
𝑞 ∈ 𝜀-closure(𝑞)

Inductive case
𝑞′ ∈ 𝜀-closure(𝑞) 𝑞″ ∈ 𝛿(𝑞′, 𝜀)

𝑞″ ∈ 𝜀-closure(𝑞)
That is, 𝑞 is always in its own 𝜀 closure, and if 𝑞′ is in the 𝜀 closure of 𝑞, and
there is an 𝜀 transition ಎom 𝑞′ to 𝑞″, then 𝑞″ is in the 𝜀 closure of 𝑞 as well.

We can use 𝜀-closure to define the extended transition function 𝛿𝜀(𝑞, 𝑎)
which gives us the set of states that can be reached ಎom 𝑞 by reading 𝑎:

𝛿𝜀(𝑞, 𝑎) = 􏾌
𝑞′∈𝜀-closure(𝑞)

𝜀-closure(𝛿(𝑞′, 𝑎))

We first find the 𝜀 closure of 𝑞. Then, for every state in the closure, we perform
a normal transition on 𝑎, giving us a new set of states. From each of these
states, we take a further 𝜀 transition; the union of all these final 𝜀 transitions is
the full set of states reachable ಎom 𝑞 by reading an 𝑎.

When simulating an 𝜀 machine (or, more generally, a NDA), our register
will not be a pair of (state, string) but rather a pair of a set of states and a string.
We can define 𝛿∗𝜀 based on 𝛿𝜀; the difference is that we must now “run” the
transition function on every set in the current set of states.

𝛿∗𝜀(𝑋, 𝜀) = {𝑋}
𝑋′ = {𝑞′ ∣ 𝑞 ∈ 𝑋, 𝑞′ ∈ 𝛿𝜀(𝑞, 𝑎)} 𝛿∗𝜀(𝑋′, 𝑠) = 𝑋″

𝛿∗𝜀(𝑋, 𝑎𝑠) = 𝑋″

We can then use 𝛿∗𝜀 to simulate a 𝜀 machine just as we would use 𝛿∗ to
simulate a DFA. Acceptance is defined as the set of states containing any final
states at the end of the string; that is,

𝑠 ∈ 𝐿𝜀(𝑀) iff 𝛿∗𝜀({𝑞􏷟}, 𝑠) ∩ 𝐹 ≠ ∅

(But note that we can reject a string early if, at any point in the simulation,
𝑋 = ∅.)

Non-Deterministic Finite Automata

NDA-𝜀 machines are in fact just an instance of non-deterministic finite automata.
An NDA is an DFA in which multiple arcs with the same label are allowed out of
a state:

0 1

2

a

a
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Given the preceding discussion of 𝜀-transitions, it should now be obvious
how this works: we redefine acceptance so that a string is accepted if there is
any sequence of states that leads to a final state, and when executing a NDA we
simply try all the possible transitions.

Execution of a NDA

Almost everything said above with respect to the execution of a NDA-𝜀 applies
here as well, the only difference is that our transition function now outputs sets
of states:

𝛿(0, 𝑎) = {1, 2}

(for the above machine).
(details to follow)

Regular Language Representations

We’ve seen several “representations” of languages: regular expressions, reg-
ular grammars, and the languages defined by DFAs and NDAs. Here we will
consider conversions between all of these representations. In particular, by
showing that every NDA can be converted to an equivalent DFA, we will prove
that non-determinism does not offer any additional computational power, and
by showing that there is a bĳection between DFAs and REs we will show that
DFAs (and hence, NDAs) accept exactly the regular languages. (In fact, we have
been dealing with regular languages all along, just in various forms.)

Regular Grammar to NDA

We will assume, without loss of generality, that every rule in the grammar is of
the forms

𝐴 → a𝐵 or 𝐴 → 𝜀

If this is not the case, note that a rule 𝐴 → a can be rewritten into a pair of
rules

𝐴 → a𝑇

𝑇 → 𝜀

Then the conversion to NDA is straightforward: every nonterminal is a state,
the start symbol is the start state, every rule of the form 𝐴 → a𝐵 indicates a
transition ಎom state 𝐴 to 𝐵 accepting a, and every rule of the form 𝐴 → 𝜀
indicates that 𝐴 is a final state. More formally:

𝑄 = 𝑉

𝑞􏷟 = 𝑆

𝐹 = {𝐴 ∣ (𝐴 → 𝜀) ∈ 𝑅}

𝛿(𝑞, 𝑎) = 𝑞′ when (𝑞 → 𝑎𝑞′) ∈ 𝑅
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As an example, the grammar

𝑆 → a𝑆 ∣ b𝐴 ∣ 𝜀

𝐴 → a𝐴 ∣ b𝑆

becomes the two-state machine

𝑆 𝐴

a

b

ab

Note that this procedure is entirely reversible: we can go ಎom a NDA to a
regular grammar with equal ease.

Regular Expression to NDA-𝜀

We’ve seen most of this conversion above. Here we will just present the results.
(details to follow)

NDA-𝜀 to NDA

Here we are interested in removing 𝜀 transitions ಎom a machine. The result
will be a NDA. This is the first step in the process of converting a NDA − 𝜀 to a
DFA.

We will rely on the function defined in section . The intuitive idea is that we
will replace a chain of arcs

𝑞􏷟
𝜀−→ ⋯ 𝜀−→ 𝑞𝑖

𝑎−→ 𝑞𝑗
𝜀−→ ⋯ 𝜀−→ 𝑞𝑛

with a single arc
𝑞􏷟

𝑎−→ 𝑞𝑛

In order to do this, we need to find 𝜀-closure(𝑞􏷟) and then, ಎom every node
in 𝜀-closure(𝑞􏷟) that has an arc labeled 𝑎, find the connected nodes, and then
again take the 𝜀-closure of all of them. Formally, we define the 𝜀-transition
function 𝛿𝜀 as

𝛿𝜀(𝑞, 𝑎) = 􏾌
𝑞′∈ 𝜀-closure(𝑞)

𝜀-closure(𝛿(𝑞′, 𝑎))

For example, consider the machine
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𝑞􏷟 𝑞􏷠

𝑞􏷡

a

𝜀

b

a, b

b

a

The 𝜀-closure of each of the states is

𝜀-closure(𝑞􏷟) = {𝑞􏷟, 𝑞􏷠}
𝜀-closure(𝑞􏷠) = {𝑞􏷠}
𝜀-closure(𝑞􏷡) = {𝑞􏷡}

To construct 𝛿𝜀(𝑞, 𝑎) we simply look at 𝑞 and find all the other nodes that
could be reached by following some (possible empty) sequence of 𝜀-transitions,
follow by a literal 𝑎-transition, followed by another (possibly empty) sequence of
𝜀-transitions:

𝛿𝜀(𝑞􏷟, a) = {𝑞􏷟, 𝑞􏷠}

𝛿𝜀(𝑞􏷟, b) = {𝑞􏷠, 𝑞􏷡}

𝛿𝜀(𝑞􏷠, a) = {𝑞􏷠}

𝛿𝜀(𝑞􏷠, b) = {𝑞􏷠}

𝛿𝜀(𝑞􏷡, a) = {𝑞􏷠}

𝛿𝜀(𝑞􏷡, b) = {𝑞􏷡}

Which gives us the 𝜀-ಎee machine

𝑞􏷟 𝑞􏷠

𝑞􏷡

a

a, b

b

a, b

b

a
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NDA to DFA

Now we consider the problem of removing nondeterminism completely. We
will continue with the 𝜀-ಎee machine ಎom the previous section. (The method
described in this section assumes that the input machine is 𝜀-ಎee.)

Here we will think of the execution of a non-deterministic machine as
running in multiple “threads”, one for each state the machine might be in at a
given point in the input string. For example, in the machine above, ಎom state
𝑞􏷟 and reading an 𝑎, we can be in state 𝑞􏷟 or 𝑞􏷠, so we will assume that we are
in both. The states in our deterministic machine will be sets of states ಎom the
original machine.

𝑄𝐷 = 𝒫(𝑄)

𝑞􏷟 = {𝑞􏷟}

𝐹𝐷 = {𝑋 ∣ 𝑋 ∈ 𝑄𝐷, 𝑋 ∩ 𝐹 ≠ ∅}

𝛿𝐷(𝑋, 𝑎) = {𝛿(𝑞, 𝑎) ∣ 𝑞 ∈ 𝑋}

The start state of the deterministic machine is simply the set of just the start
state of the original machine. The final states of the deterministic machine
are any sets which contain a final state of the original machine. The transition
function simply runs the original transition function on all states in the set
simultaneously.

For the example machine above (with the states numbered for easy of refer-
ence) we have

𝑄𝐷 = {∅⏟
􏷟

, {𝑞􏷟}􏿄
􏷠

, {𝑞􏷠}􏿄
􏷡

, {𝑞􏷡}􏿄
􏷢

, {𝑞􏷟, 𝑞􏷠}􏿋􏻰􏻰􏿌􏻰􏻰􏿍
􏷣

, {𝑞􏷟, 𝑞􏷡}􏿋􏻰􏻰􏿌􏻰􏻰􏿍
􏷤

, {𝑞􏷠, 𝑞􏷡}􏿋􏻰􏻰􏿌􏻰􏻰􏿍
􏷥

, {𝑞􏷟, 𝑞􏷠, 𝑞􏷡}􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍
􏷦

}

𝑞􏷟 = {1}

𝐹𝐷 = {2, 4, 6, 7}

𝛿𝐷(0, a) = 0

𝛿𝐷(1, a) = 1

𝛿𝐷(2, a) = 2

𝛿𝐷(3, a) = 2

𝛿𝐷(4, a) = 4

𝛿𝐷(5, a) = 4

𝛿𝐷(6, a) = 2

𝛿𝐷(7, a) = 4

𝛿𝐷(0, b) = 0

𝛿𝐷(1, b) = 6

𝛿𝐷(2, b) = 2

𝛿𝐷(3, b) = 3

𝛿𝐷(4, b) = 6

𝛿𝐷(5, b) = 6

𝛿𝐷(6, b) = 6

𝛿𝐷(7, b) = 6

Giving us the machine:
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0 1 2 3

4 5 6 7

a, b

a
b

a, b

a

b

a

b

a
b

a

b

a

b

Note that states 0, 3, 5 and 7 are unreachable. Aಏer their removal we have

1 2

4 6

a b

a, b

a b
b

a

Thus completing the transformation ಎom NDA-𝜀 to DFA.

NDA/DFA to Regular Expression (direct)

We will examine a method for converting a FSM (DFA or NDA) directly to a RE.
Incidentally, this method, together with any of the methods for constructing a
DFA ಎom a REG, completes the proof that deterministic finite automata accept
exactly the regular languages.

Our method works by converting the graph of a FSM to an expression graph.
An expression graph is, like a DFA/NDA, a directed graph with a distinguished
initial node and a set of final nodes. Here, however, the arcs between nodes are
labeled with regular expressions. For example:

0 1 2a∗ b∗

This expression graph accepts the language a∗b∗. Since edges can be labeled
with arbitrary regular expressions, we can simpli௫ this graph by deleting state 1,
replacing it with a single arc ಎom 0 to 1, labeled with the concatenation of a∗
and b∗:

0 2a∗b∗
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Our general algorithm will thus be to choose an arbitrary non-initial, non-
final state to delete, examine its inbound and outbound arcs, and combine them
into arcs directly connecting the now-adjacent nodes (i.e., bypassing the deleted
node). Once the deleted node has been fully disconnected, it can be removed
ಎom the graph. Eventually, we will have a graph in one of two forms

0

𝑟∗

𝑟

or 0 1

𝑟∗􏷠𝑟􏷡(𝑟􏷣 + 𝑟􏷢𝑟∗􏷠𝑟􏷡)∗

𝑟􏷠
𝑟􏷡

𝑟􏷢

𝑟􏷣 Figure 5: Results of the node deletion
algorithm

The first represents the regular expression 𝑟∗ while the second represents
𝑟∗􏷠𝑟􏷡(𝑟􏷢 + 𝑟􏷣𝑟∗􏷠𝑟􏷡)∗. (Although this might appear complex, in practice the regular
expression identities in figure 4 can oಏen be used to significantly simpli௫ the
resulting expression.)

The full algorithm is presented in algorithm 1.

Algorithm 1 Node deletion algorithm
1: For each 𝑓 ∈ 𝐹 make a copy of 𝑀: 𝑀𝑓, with a single final state 𝑓
2: for all 𝑀𝑓 do
3: for all non-initial, non-final nodes 𝑞 do
4: Choose nodes 𝑞−􏷠 and 𝑞+􏷠 with 𝑞−􏷠 ≠ 𝑞 and 𝑞+􏷠 ≠ 𝑞 such that 𝛿(𝑞−􏷠, −) = 𝑞 and 𝛿(𝑞, −) = 𝑞+􏷠.
5: for all pairs of arcs 𝑞−􏷠

𝑟􏷪−→ 𝑞 and 𝑞 𝑟􏷫−→ 𝑞+􏷠 do
6: if 𝛿(𝑞, 𝑟) = 𝑞 for some 𝑟 then
7: Add arc 𝑞−􏷠

𝑟􏷪𝑟∗𝑟􏷫−−−→ 𝑞+􏷠
8: else
9: Add arc 𝑞−􏷠

𝑟􏷪𝑟􏷫−−→ 𝑞+􏷠
10: end if
11: Remove all arcs 𝑞−􏷠

𝑟􏷪,􏷫,…−−−→ 𝑞+􏷠 and replace with a single arc labeled 𝑞−􏷠
𝑟􏷪+𝑟􏷫+…−−−−−→ 𝑞+􏷠

12: end for
13: Delete node 𝑞 ಎom 𝑀𝑓, along with all arcs into/out of it.
14: end for
15: The RE corresponding to 𝑀𝑓, 𝑅(𝑀𝑓) is is given by the machines in figure 5.
16: end for
17: The final RE is 𝑅(𝑀𝑓􏷪 ) + 𝑅(𝑀𝑓􏷫 ) + …

Regular Expression to DFA (direct)

We mentioned above that it is possible, but cumbersome, to directly construct
the union and concatenation of a pair of DFAs, and the Kleene star of a single
DFA. Since this construction gives us a directly translation ಎom RE to DFA it
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serves to emphasize that all regular languages can be accepted by a DFA. But
note that the machines constructed by this method tend to be quite large, so
some kind of simplification is needed.

In order to transform a REG into a DFA, we will map each of the allow con-
structors for REG — ∅, 𝑎, ∪, ⋅, ∗— into a corresponding machine. The construc-
tions will be increasingly complex.

𝑀∅, the machine that accepts ∅: This machine will have one state, which is
not final. It can be thought of as a machine which is nothing but a trap state:

𝑞􏷟 Σ

𝑀𝑎, the machine that accepts a single symbol 𝑎: This machine will have three
states: the start state must not be final (because 𝜀 is not accepted), there must
be a final state aಏer 𝑎 has been accepted, and there must be a trap state to reject
all other strings:

𝑞􏷟 𝑞􏷠

𝑞𝑇

𝑎

Σ − {𝑎} Σ
Σ

𝑀∪, the Union machine: To construct a machine that accepts the union of the
languages of two other machines (i.e., 𝑀 such that 𝐿(𝑀) = 𝐿(𝑀􏷠) ∪ 𝐿(𝑀􏷡))
requires some cleverness. We are going to build a machine that essentially runs
both its constituent machines together, in lockstep. If, at the end of the string,
either machine is in a final state, then the string is accepted.

(For clarity in the following discussion, elements of 𝑀􏷠 will be colored in
blue, while elements of 𝑀􏷡 will be red.)

In order to run both machines simultaneously, we will represents states in 𝑀
as pairs of states ಎom 𝑀􏷠 and 𝑀􏷡:

𝑄 = {(𝑞, 𝑞) ∣ 𝑞 ∈ 𝑄􏷠, 𝑞 ∈ 𝑄􏷡}

The start state will be the pair of both machines’ start states:

𝑞􏷟 = (𝑞􏷟, 𝑞􏷟)

while the final states will consist of those pairs in which either component is
final:

𝐹 = {(𝑞, 𝑞) ∣ 𝑞 ∈ 𝑄􏷠, 𝑞 ∈ 𝑄􏷡, 𝑞 ∈ 𝐹􏷠 ∨ 𝑞 ∈ 𝐹􏷡}

The transition function will, for any input character 𝑎, simply run 𝛿􏷠 and 𝛿􏷡
on the respective components of the current state:

𝛿((𝑞, 𝑞), 𝑎) = (𝛿􏷠(𝑞, 𝑎), 𝛿􏷡(𝑞, 𝑎))

As an example, consider constructing the union of the two machines
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0

𝑇

a

b

0

𝑇

b

a

Each our these machines has 2 states, so the union of them will have 2 × 2 =
4 states:

𝑄 = {(0, 0), (0, 𝑇), (𝑇, 0), (𝑇, 𝑇)}

Of these, all but one – (𝑇, 𝑇) – is final. The transition function is given by

𝛿((0, 0), 𝑎) = (0, 𝑇)

𝛿((0, 0), 𝑏) = (𝑇, 0)

𝛿((0, 𝑇), 𝑎) = (0, 𝑇)

𝛿((0, 𝑇), 𝑏) = (𝑇, 𝑇)

𝛿((𝑇, 0), 𝑎) = (𝑇, 𝑇)

𝛿((𝑇, 0), 𝑏) = (𝑇, 0)

𝛿((𝑇, 𝑇), 𝑎) = (𝑇, 𝑇)

𝛿((𝑇, 𝑇), 𝑏) = (𝑇, 𝑇)

The resulting machine is

0,0 0,𝑇

𝑇 ,0 𝑇 ,𝑇

a

b

a

b

a
b a,b

As an aside, note that we can use a similar construct to build an Intersection
machine: we simply change the criteria for final states so that (𝑞, 𝑞) is final iff
𝑞 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹. I.e.,

𝐹 = {(𝑞, 𝑞) ∣ (𝑞, 𝑞) ∈ 𝑄, 𝑞 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹}

This serves as a proof that REG is closed under intersection. A similar trick can An alternate proof relies on the proof that
REG is closed under complementation via the
identity 𝐿􏷪 ∩ 𝐿􏷫 = ¬(¬𝐿􏷪 ∪ ¬𝐿􏷫).

be used to build machines that accept the symmetric or set difference of two
machines’ languages, thus proving that REG is closed under those operations as
well.

𝑀⋅, the Cat machine: In order to construct a single machine which accepts
the concatenation of two machines’ languages, we have to somehow run one
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machine until it finishes on some prefix of the string, and then start the second
machine at that point in the string and run it to its completion. The catch is
that the first machine may finish (reach a final state) at many different positions
in the string, and we have no way of knowing in advance which prefix will allow
the second machine to complete successfully.

We’ve already seen ಎom the union machine that it’s possible to effectively
run two machines in parallel. What we need here is the ability to run 𝑛 “in-
stances” of 𝑀􏷡 in parallel with 𝑀􏷠, where 𝑛 is not fixed (e.g., at 1, as in the
union machine) but can vary at runtime. We will do this by representing the
collection of all running instances of 𝑀􏷡 as a set of states ಎom 𝑄􏷡. Because two
instances of 𝑀􏷡 are indistinguishable if they are in the same state, we do not
need to keep track of multiple instances per state. Thus, the upper bound on 𝑛
is |𝒫 (𝑄􏷡)|. Of course, this can still be quite large; the number of states in our
combined machine will be |𝑄􏷠|(2|𝑄􏷫 |).

The states of our machine will be the states of 𝑀􏷠, paired with subsets of the
states of 𝑀􏷡:

{(𝑞􏷠, 𝑋􏷡) ∣ 𝑞􏷠 ∈ 𝑄􏷠, 𝑋􏷡 ∈ 𝒫(𝑄􏷡)}

However this alone is not quite correct. We need to “fork” a new instance of 𝑀􏷡

whenever 𝑀􏷠 is in a final state. Thus, if 𝑞􏷠 ∈ 𝐹􏷠, we must ensure that 𝑞􏷟 of 𝑀􏷡

is an element of 𝑋􏷡. To do this, we define the notion of “correcting” a state:

(𝑞, 𝑋)𝐶 =

⎧⎪⎪⎨
⎪⎪⎩
(𝑞, 𝑋 ∪ {𝑞􏷟}) if 𝑞 ∈ 𝐹􏷠
(𝑞, 𝑋) otherwise

The final states will consist of those states in which any instance of 𝑀􏷡 is in
a final state.

With the correction operation specified, we can now give the specification of
the Cat machine:

𝑄 = {(𝑞􏷠, 𝑋􏷡)𝐶 ∣ 𝑞􏷠 ∈ 𝑄􏷠, 𝑋􏷡 ∈ 𝒫(𝑄􏷡)}

𝑞􏷟 = (𝑞􏷟,∅)𝐶

𝐹 = {(𝑞, 𝑋) ∣ (𝑞, 𝑋) ∈ 𝑄,𝑋 ∩ 𝐹􏷡 ≠ ∅}

𝛿((𝑞, 𝑋), 𝑎) = (𝛿􏷠(𝑞, 𝑎), {𝛿􏷡(𝑥, 𝑎) ∣ 𝑥 ∈ 𝑋})𝐶

As an example, we will build the machine that accepts a∗b∗ out of the com-
ponent machines given above. The resulting machine will have 2(2􏷡) = 8 states,
but correction will remove 2 of these. Of the resulting 6 states, 4 will be final:

𝑄 = {(𝑞􏷟, {𝑞􏷟}), (𝑞􏷟, {𝑞􏷟, 𝑞𝑇 }), (𝑞𝑇 ,∅), (𝑞𝑇 , {𝑞􏷟}), (𝑞𝑇 , {𝑞𝑇 }), (𝑞𝑇 , {𝑞􏷟, 𝑞𝑇 })}

𝑞􏷟 = (𝑞􏷟,∅)𝐶 = (𝑞􏷟, {𝑞􏷟})

𝐹 = {(𝑞􏷟, {𝑞􏷟}), (𝑞􏷟, {𝑞􏷟, 𝑞𝑇 }), (𝑞𝑇 , {𝑞􏷟}), (𝑞𝑇 , {𝑞􏷟, 𝑞𝑇 })}
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𝛿((𝑞􏷟, {𝑞􏷟}), a) = (𝑞􏷟, {𝑞􏷟, 𝑞𝑇 })

𝛿((𝑞􏷟, {𝑞􏷟}), b) = (𝑞𝑇 , {𝑞􏷟})

𝛿((𝑞􏷟, {𝑞􏷟, 𝑞𝑇 }), a) = (𝑞􏷟, {𝑞􏷟, 𝑞𝑇 })

𝛿((𝑞􏷟, {𝑞􏷟, 𝑞𝑇 }), a) = (𝑞𝑇 , {𝑞􏷟, 𝑞𝑇 })

𝛿((𝑞𝑇 ,∅), a) = (𝑞𝑇 ,∅)

𝛿((𝑞𝑇 ,∅), b) = (𝑞𝑇 ,∅)

𝛿((𝑞𝑇 , {𝑞􏷟}), a) = (𝑞𝑇 , {𝑞𝑇 })

𝛿((𝑞𝑇 , {𝑞􏷟}), b) = (𝑞𝑇 , {𝑞􏷟})

𝛿((𝑞𝑇 , {𝑞𝑇 }), a) = (𝑞𝑇 , {𝑞𝑇 })

𝛿((𝑞𝑇 , {𝑞𝑇 }), b) = (𝑞𝑇 , {𝑞𝑇 })

𝛿((𝑞𝑇 , {𝑞􏷟, 𝑞𝑇 }), a) = (𝑞𝑇 , {𝑞𝑇 })

𝛿((𝑞𝑇 , {𝑞􏷟, 𝑞𝑇 }), b) = (𝑞𝑇 , {𝑞􏷟, 𝑞𝑇 })

Giving us the machine

𝑞􏷟, {𝑞􏷟} 𝑞􏷟, {𝑞􏷟, 𝑞𝑇 } 𝑞𝑇 ,∅

𝑞𝑇 , {𝑞􏷟} 𝑞𝑇 , {𝑞𝑇 } 𝑞𝑇 , {𝑞􏷟, 𝑞𝑇 }

a

b

a

b

a, b

a

b a, b

a

b

(Note that node (𝑞𝑇 ,∅) is unreachable and thus can be removed without
affecting the behavior of the machine.)

The Star machine: The technique for constructing 𝑀∗ is very similar to that
for constructing 𝑀􏷠 ⋅ 𝑀􏷡. As before, we will run multiple instances of 𝑀 in
parallel, spawning a new instance whenever any existing instance is in a final
state. Thus, if, at the end of the string, any instance is in a final state, this
indicates that there was some repetition which was able to consume the entire
string. The one caveat is that, because 𝜀 ∈ 𝐿(𝑀)∗ our start state must be a final
state. Since this may not be the case in the original machine, we will repurpose
the state represented by ∅ to be the new start state. Its transitions will be
identical to those of the original 𝑞􏷟.
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As before, we need to “correct” our sets of states: whenever any state is final,
we need to ensure that the start state is present in the set. To that purpose, we
define

𝑋𝐶 =

⎧⎪⎪⎨
⎪⎪⎩
𝑋 ∪ {𝑞􏷟} if 𝑋 ∩ 𝐹 ≠ ∅

𝑋 otherwise

𝑄∗ = {𝑋𝐶 ∣ 𝑋 ∈ 𝒫(𝑄)}

𝑞􏷟 = ∅

𝐹∗ = {∅} ∪ {𝑋 ∣ 𝑋 ∈ 𝑄∗, 𝑋 ∩ 𝐹 ≠ ∅}

𝛿∗(∅, 𝑎) = {𝛿(𝑞􏷟, 𝑎)}𝐶

𝛿∗(𝑋, 𝑎) = {𝑞′ ∣ 𝑞 ∈ 𝑋, 𝛿(𝑞, 𝑎) = 𝑞′}𝐶

As an example, we will construct the machine recognizing a∗ ಎom the
machine recognizing a:

𝑞􏷟 𝑞􏷠

𝑞𝑇

a

b a,b

a,b

The resulting machine will have 2􏷢 = 8 states, but aಏer correction only 6 will
remain, of which 4 are final.

𝑄 = {∅, {𝑞􏷟}, {𝑞𝑇 }, {𝑞􏷟, 𝑞􏷠}, {𝑞􏷟, 𝑞𝑇 }, {𝑞􏷟, 𝑞􏷠, 𝑞𝑇 }}

𝑞􏷟 = ∅

𝐹 = {∅, {𝑞􏷟, 𝑞􏷠}, {𝑞􏷟, 𝑞􏷠, 𝑞𝑇 }}
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𝛿(∅, a) = {𝑞􏷟, 𝑞􏷠}

𝛿(∅, b) = {𝑞𝑇 }

𝛿({𝑞􏷟}, a) = {𝑞􏷟, 𝑞􏷠}

𝛿({𝑞􏷟}, b) = {𝑞𝑇 }

𝛿({𝑞𝑇 }, a) = {𝑞𝑇 }

𝛿({𝑞𝑇 }, b) = {𝑞𝑇 }

𝛿({𝑞􏷟, 𝑞􏷠}, a) = {𝑞􏷟, 𝑞􏷠, 𝑞𝑇 }

𝛿({𝑞􏷟, 𝑞􏷠}, b) = {𝑞𝑇 }

𝛿({𝑞􏷟, 𝑞𝑇 }, a) = {𝑞􏷟, 𝑞􏷠, 𝑞𝑇 }

𝛿({𝑞􏷟, 𝑞𝑇 }, b) = {𝑞𝑇 }

𝛿({𝑞􏷟, 𝑞􏷠, 𝑞𝑇 }, a) = {𝑞􏷟, 𝑞􏷠, 𝑞𝑇 }

𝛿({𝑞􏷟, 𝑞􏷠, 𝑞𝑇 }, b) = {𝑞𝑇 }

∅ 𝑞􏷟 𝑞𝑇

𝑞􏷟, 𝑞􏷠 𝑞􏷟, 𝑞𝑇 𝑞􏷟, 𝑞􏷠, 𝑞𝑇

a

b

a

b a, b

a

b

a

b

a

b

Note that nodes {𝑞􏷟} and {𝑞􏷟, 𝑞𝑇 } are unreachable and thus can be removed.
Aಏer their removal we have

∅ 𝑞􏷟, 𝑞􏷠 𝑞􏷟, 𝑞􏷠, 𝑞𝑇

𝑞𝑇

a

b

a

b

a

b

a, b

The Complement machine: Thought it is not necessary for the REG → FSM

construction, we mention here that it is easy to construct a machine which
accepts the complement of the language of another machine. I.e., 𝐿(¬𝑀) =
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Σ ∗ − 𝐿(𝑀). This is accomplished by simply swapping all final and non-final
states. I.e.,

𝐹¬ = 𝑄 − 𝐹

The proof that 𝐿(¬𝑀) = ¬𝐿(𝑀) is leಏ as an exercise for the reader, however,
we will mention, once proved, this shows that REG is closed under complemen-
tation.
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