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Preliminaries: Sets in Haskell

Much of our work on context-ಎee grammars and languages will require more
sophisticated set-handling facilities than previously. In this section, we detail a
few areas which may need more exposition.

Set normalization

As before, in order for many of our algorithms to work correctly, sets, when
represented as lists, must be both duplicate-ಎee and in some normal form, so
that sets can be compared for (in)equality using the normal == and /= operators.
We contiune to use the function distinct, given in figure 1, to both sort the
elements of a set (imposing a normal form) and to eliminate any duplicates.

Note that while Data.List.nub runs in 𝑂(𝑛)
due to the fact that it only requires its input
to be Eq, distinct requires Ord and thus is
able to run in 𝑂(𝑛 log𝑛).

import Data.List (sort)

distinct :: Ord a => [a] -> [a]
distinct = dedup . sort

where
dedup [] = []
dedup [x] = [x]
dedup (x1:x2:xs) | x1 == x2 = dedup (x2:xs)

| otherwise = x1 : dedup (x2:xs)

Figure 1: The distinct function

Note, of course, that when dealing with nested sets, all levels must be nor-
malized ಎom the inside out.

Building sets inductively in Haskell

Many of the algorithms we will describe build sets inductively. For example, the
algorithm for determining the set of nullable variables in a grammar is specified
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as

Base
(𝐴 → 𝜀) ∈ 𝑅
𝐴 ∈ nullable

Induction
(𝐴 → 𝑤) ∈ 𝑅 𝑤 ∈ nullable∗

𝐴 ∈ nullable

(That is, a variable is nullable if either it is defined as just 𝜀, or if its definition is
a string of nullable variables.)

Although we could translate this directly into a recursive predicate testing
membership in nullable:

is_nullable :: Grammar -> Var -> Bool
is_nullable (vs,s,rs) v = (v,[Nothing]) `elem` rs ||

or [ is_null_str d | (v',d) <- rs, v' == v]
where
is_null_str s = and [is_nullable c | Just c <- s]

this will be horribly inefficient as we are repeatedly testing the same variables
for membership, without retaining any information. Instead, we want to ac-
tually build and return the set nullable, so that membership becomes a simple
elem.

The ordinary method for building an inductive set algorithmically is to add
elements to the set, each time testing to see whether the “new” set is different
ಎom the old. If it is, then the elements we just added have not been processed
and we have more work to do. If it is not, then the new elements were already
in the set, and thus at least this branch of the computation is finished. Of
course, we only really need to process the “new” elements; there is no need to
re-process existing elements. In fact, what we want is some kind of duplicate-
ಎee stack or queue.

(details to follow)

Context-Free Languages and Grammars

Normal Forms for Context-Free Grammars

Oಏen, in order to use a grammar in some particular way, we will want the rules
to have particular forms. We can transform grammars in various ways, without
affecting the languages that they generate, if we are careful. In this section we
will examine both methods for “safely” rewriting grammars into new forms,
as well as develop the forms themselves that we are interested in. (Note that
every transformation we will cover will be described in terms of transforming a
grammar into a new one, rather than by destructive modification of an existing
grammar.)

Non-recursive start symbol

The simplest transformation we can make is to ensure that the start variable
is non-recursive, either directly or indirectly. Assuming that the existing start
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variable is 𝑆, we do this by simply adding a new start variable 𝑆′ with a single
rule

𝑆′ → 𝑆

Since 𝑆 is no longer the start variable, any recursion on it is acceptable, and
because the only reference to 𝑆′ is in the rule we just added, it is not recursive.

As an example, consider the grammar

𝑆 → a𝑆 ∣ b𝐴

𝐴 → 𝑏A ∣ b

To make this not have a recursive start variable, we simply add

𝑆′ → 𝑆

𝑆 → a𝑆 ∣ b𝐴

𝐴 → 𝑏A ∣ b

and we are done.
Although it should be obvious, we will also show that the language gener-

ated by the grammar has not changed. Any derivation 𝑆
∗
=⇒ 𝑢 in the original

grammar can be made into a valid derivation in the new grammar by simply
doing 𝑆′ ⇒ 𝑆

∗
=⇒ 𝑢.

Eliminating 𝜀-rules

An 𝜀 rule is one that can derive the empty string 𝜀. We wish to eliminate 𝜀
rules so that derivations like 𝑢𝑉𝑤

∗
=⇒ 𝑢𝑤 (where 𝑉 ∗

=⇒ 𝜀) are not present. Such
derivations have the effect of reducing the length of the string being generated;
ideally, we’d like every rule application to either keep the length of the string
the same, or increase it.

The trick to eliminating 𝜀 rules will be used later to eliminate other kinds
of undesirable derivations, and relies on a simple general principle: if 𝐴 ∗

=⇒ 𝑢
is a derivation in 𝐺, then we can add a rule 𝐴 → 𝑢 to 𝐺 without affecting the
language. The new rule serves as a “shortcut” through the grammar, but does
not add any new strings (because it only gives us what we could already get, just
through a shorter derivation) nor remove any.

A nullable variable is one that can derive the empty string. A variable can be
nullable in one of two ways:

• 𝑉 is nullable if (𝑉 → 𝜀) ∈ 𝑅

• 𝑉 is nullable if (𝑉 → 𝑢) ∈ 𝑅 and every symbol in 𝑢 is nullable.

Following this definition, we can inductively construct the set nullable, the
set of all variables in a grammar that can derive the empty string:

Base
(𝑉 → 𝜀) ∈ 𝑅
𝑉 ∈ nullable

Ind
(𝑉 → 𝑢) ∈ 𝑅 𝑢 ∈ nullable∗

𝑉 ∈ nullable
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An alternate definition would be to have

Base′
𝜀 ∈ nullable

as the base case.

If a nullable variable occurs in the right-hand-side of a rule, the question
remains as to how to eliminate it (or rather, what rules to replace it with). We
must bear in mind that just because a variable is nullable, it does not follow that
it is null; i.e., that the only string it derives is the empty string. Since a nullable
variable may still derive other, non-empty terminal strings, we must capture the
behavior in this case. Our transformation relies on the observation that that
if 𝑉 is nullable then the string 𝑢𝑉𝑤 can derive either 𝑢𝑉𝑤 or 𝑢𝑤. The second
alternative results when 𝑉

∗
=⇒ 𝜀. Thus, our process is, for each rule whose def-

inition includes one or more nullable variables, to generate all the alternatives
that would result ಎom either keeping or removing any or all of the nullable
variables. Note that if there are 𝑛 nullable variables in a given definition, the
expansion will have 2𝑛 alternatives. Also note that distinct occurrences of the
same nullable variable are treated as separate nullable variables.

Algorithm 1 𝜀-rule removal
1: Construct 𝑁 = nullable, the set of nullable variables in 𝐺
2: for all (𝑉 → 𝑢) ∈ 𝑅, 𝑢 ≠ 𝜀,𝑉 ≠ 𝑆 do
3: Let 𝑋 be the set of nullable variable occurrences in 𝑢.
4: for all 𝑥 ∈ 𝒫(𝑋) do
5: Build the string 𝑢′ such that if 𝐴 is a nullable variable occurrence in 𝑢 and 𝐴 ∈ 𝑥 then 𝐴 remains in 𝑢′, other-

wise it is removed.
6: Add 𝑉 → 𝑢′ to 𝑅′

7: end for
8: end for
9: (Any variables which have no definitions in 𝑅′ can be removed ಎom 𝑉 .)

As a special case, we allow 𝑆 → 𝜀. If this were not allowed, it would be
impossible to build a grammar for the null language. (But note that under this
definition, all null languages now have the identical grammar, consisting of just
the rule 𝑆 → 𝜀.)

Eliminate chain rules

A chain rule is a rule of the form 𝐴 → 𝐵. The application of such a rule does
not bring the string being derived any closer to being terminal; it simply re-
names a variable. We wish to remove such rules ಎom the grammar.

We can inductively define the set of chain variables of a variable 𝑉 as follows:

Base
𝑉 ∈ chain(𝑉)

Ind
𝐴 ∈ chain(𝑉) (𝐴 → 𝐵) ∈ 𝑅

𝐵 ∈ chain(𝑉)

To eliminate a chain rule 𝐴 → 𝐵, we simply replace the alternative 𝐵 with
the complete definition (all alternatives) of 𝐵. Assuming we have “unchained” 𝐵
previously, this definition of 𝐴 will now be chain-ಎee as well.
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Algorithm 2 Elimination of chain rules
1: for all 𝐴 ∈ 𝑉 do
2: for all 𝐴′ ∈ chain(𝐴) do
3: If 𝐴′ → 𝑢 is the definition of 𝐴′, add 𝐴 → 𝑢 to 𝑅′ (provided 𝑢 is not a single variable).
4: end for
5: end for

Note that the added non-recursive start rule 𝑆′ is not exempt ಎom this
processing: the definition of 𝑆′ will be replaced with the complete definition of
𝑆.

Removing useless variables

A variable can be useless in two ways:

• If it cannot be reached ಎom the start symbol. That is, if there is no deriva-
tion 𝑆

∗
=⇒ 𝑢𝑉𝑤 then 𝑉 is unreachable.

• If it cannot derive any terminal strings. That is, if there is no derivation
𝑉

∗
=⇒ 𝑢 with 𝑢 ∈ Σ ∗ then 𝑉 is non-terminating.

We will develop definitions for both of these concepts separately, and then
combine them to form a single notion of useless variables and to arrange their
removal.

Unreachable symbols: A symbol is unreachable if it does not occur in any string
derived ಎom the start symbol. We will find it easier to define the complemen-
tary set of all reachable variables:

Base
𝑆 ∈ reachable

Ind
𝑉 ∈ reachable (𝑉 → 𝑢𝑉 ′𝑤) ∈ 𝑅

𝑉 ′ ∈ reachable

Then the set of unreachable variables is simply 𝑉 − reachable.

Non-terminating variables: A variable is non-terminating if it cannot derive any
terminal strings. As above, we will find it easier to define the set of terminating
variables which can derive terminal strings, and then take its complement.

Base
(𝑉 → 𝑢) ∈ 𝑅 𝑢 ∈ Σ ∗

𝑉 ∈ terminating
Ind

(𝑉 → 𝑢) ∈ 𝑅 𝑢 ∈ (Σ ∪ terminating)∗

𝑉 ∈ terminating

Then the set of non-terminating variables is simply 𝑉 − terminating. An alternate base case would be

Base′
𝑎 ∈ 

𝑎 ∈ terminating

Then, the set terminating is the set of all
symbols—terminal and non-terminal—that
can derive terminal strings.

Useless variables: A variable is useless iff it is either non-terminating or un-
reachable. We thus define the set useless as

useless = 𝑉 − (terminating ∩ reachable)
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To remove useless variables ಎom the grammar, we simply delete any rules
that refer to them, either on the leಏ (i.e., as a definition of them) or on the
right. If 𝑉 is a useless variable, then an alternative 𝐴 → 𝑢𝑉𝑤 will either a)
not be able to derive any terminal strings (if 𝑉 is non-terminating), b) not be
derivable ಎom 𝑆 (if 𝑉 is unreachable) or c) both. And if 𝑉 → 𝑢 defines a useless
variable 𝑉 then removing the definition will have no effect on the language of
the grammar.

Chomsky normal form

In Chomsky normal form, every rule must have one of the following forms:

𝑆 → 𝜀

𝐴 → a

𝐴 → 𝐵𝐶

The third form essentially structures derivations as binary trees, with terminal
derivations (via the second form) as the leaves.

To translate a grammar into CNF we begin by adding rules of the second
form for all terminal symbols which are present in the grammar:

𝑉 → 𝑠 𝑠 = 𝑢a𝑣
(A → a) ∈ 𝑅′

(details to follow)

Greibach normal form

In Greibach normal form, every rule must have one of the following forms:

𝑆 → 𝜀

𝐴 → a𝐴𝐴…𝐴𝑛 (𝑛 ≥ 0)

Note that a grammar in Greibach normal form is guaranteed to be leಏ-
recursion-ಎee.

Transforming a grammar into Greibach normal form usually results in an
explosion in the number of rules: in the worst case, the normalized grammar
will have 𝑂(|𝑅|) rules.

The advantage to Greibach normal form is that it has an easy translation into
an extended pushdown automaton1: The automaton will have two states, 𝑞 1 An extended PDA is one which can push

any number of symbols onto the stack in a
single transition.

initial, and 𝑞 final. and a rule of the form

𝐴 → a𝐴𝐴…𝐴𝑛 𝐴 ≠ 𝑆

is translated into a transition ಎom 𝑞 to 𝑞 that reads an a, pops an 𝐴, and then
pushes 𝐴𝐴…𝐴𝑛. A rule of the form

𝑆 → a𝐴𝐴…𝐴𝑛
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is translated into a transition ಎom 𝑞 to 𝑞. If (𝑆 → 𝜀) ∈ 𝑅 then there is an
𝜀-transition (reads nothing, pushes and pops nothing) ಎom 𝑞 to 𝑞.

This translation serves to prove that every context-ಎee grammar can be
accepted by a PDA (since any CFG can be translated into Greibach normal
form, and any extended PDA can be transformed into a traditional PDA).

Pushdown Automata

Parsing Algorithms

Parsing Expression Grammars

Parsing expression grammars are a recognition-based ಎamework for parsing.
While our previous definition⒮ for grammars defined them in terms of the
strings that the generate (via derivations), PEGs’ functionality is defined in
terms of the strings that it recognizes.

A PEG can be thought of as a CFG where every decision is greedy; in a set
of alternatives, the first alternative to match is the one chosen, and repetition
always captures as much of the input as possible.

A PEG has the following general syntax:

𝑃 ← 𝑃𝑃…𝑃𝑛 (Sequence)
𝑃 ← 𝑃 / 𝑃 / … / 𝑃𝑛 (“Ordered choice”)
𝑃 ← 𝑃∗ (Zero-or-more)
𝑃 ← 𝑃+ (One-or-more)
𝑃 ← 𝑃? (Zero-or-one)
𝑃 ← &𝑃 (Positive lookahead)
𝑃 ← !𝑃 (Negative lookahead)
𝑃 ← (𝑃)

𝑃 ← c (Terminal symbol)
𝑃 ← . (Any terminal symbol)

PEG parsing can best be thought of as a process of matching and consuming
prefixes of the input string:

• To match a sequence 𝑃𝑃…𝑃𝑛, first match 𝑃. If that is successful, match
𝑃 at the point where 𝑃 leಏ off. Continue until 𝑃𝑛 is matched and con-
sumed. If any of the 𝑃𝑖 fails to match, the entire sequence fails, and nothing
is consumed.

• To match an ordered choice 𝑃 / 𝑃 / … / 𝑃𝑛 first try to match 𝑃. If that
is successful, then the entire match succeeds, consuming whatever 𝑃 con-
sumed. If 𝑃 fails then try to match 𝑃. If, finally, 𝑃𝑛 fails, then the entire
choice fails and nothing is consumed. Note that while in a sequence each 𝑃𝑖
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is started at the point where the previous leಏ off, in an ordered choice the
original starting position is restored before matching each 𝑃𝑖.

• To match 𝑃∗, just match
𝑇 ← 𝑃𝑇 / 𝜀

• To match 𝑃+, just match 𝑃𝑃∗.

• To match 𝑃?, just match
𝑇 ← 𝑃 / 𝜀

• To match &𝑃, try to match 𝑃. If this is successful, then the lookahead
succeeds but consumes nothing. Otherwise the lookahead fails.

• To match ! 𝑃, try to match 𝑃. If this is successful, then the lookahead fails,
otherwise the lookahead succeeds, consuming nothing.

The fact that positive and negative lookahead accept arbitrary PEG expres-
sions as their arguments means that lookahead in PEGs is much more powerful
than the fixed-length lookahead of LL(𝑘) or LR(𝑘) languages, or even the
RE-based lookahead of LL(∗).

To match each of the PEG constructs, we present pseudo-code algorithms
that describe matching in terms of advancing a match pointer at in a global
input string 𝑠. Each match construct takes the current match position as an ar-
gument, and returns the new match position. If the match fails, −1 is returned
as a sentinel value. (We assume that beyond the end of the string is padded
with a unique terminal symbol # which does not occur anywhere else.)

To match a terminal symbol c:
1: if 𝑠[at] = c then return at + 1
2: else return −1
3: end if

To match any terminal symbol .:
1: if 𝑠[at] ≠ # then return at + 1
2: else return −1
3: end if

To match a sequence 𝑃𝑃…𝑃𝑛:
1: if (at ← 𝑃(at)) ≥ 0 then
2: if (at ← 𝑃(at)) ≥ 0 then
3: …
4: if (at ← 𝑃𝑛(at)) ≥ 0 then
5: return at
6: end if
7: end if
8: end if
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9: return −1
Note that aಏer matching each 𝑃𝑖 we update the current position at.

To match an ordered choice 𝑃 / 𝑃 / … / 𝑃𝑛:
1: orig ← at
2: if (at ← 𝑃(orig)) ≥ 0 then
3: return at
4: else if (at ← 𝑃(orig)) ≥ 0 then
5: return at
6: else if … then
7: …
8: else if (at ← 𝑃𝑛(orig)) ≥ 0 then
9: return at
10: else
11: return −1
12: end if
To match zero-or-more 𝑃∗:

1: last ← at
2: while at ← 𝑃(at) ≥ 0 do
3: last ← at
4: end while
5: return last

To match one-or-more 𝑃+, just match the sequence 𝑃𝑃∗.

To match zero-or-one 𝑃?:
1: orig ← at
2: if (at ← 𝑃(at)) ≥ 0 then
3: return at
4: else
5: return orig
6: end if

To match the positive lookahead &𝑃:
1: if 𝑃(at) ≥ 0 then
2: return at
3: else
4: return −1
5: end if

To match the negative lookahead ! 𝑃:
1: if 𝑃(at) < 0 then
2: return at
3: else
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4: return −1
5: end if
Note that implementing PEGs in a language which supports first-class

functions is particularly easy. Each of the above constructs becomes a higher-
order function taking one or more “matcher” functions 𝑃𝑖 as inputs.
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